001     885860
005     20230111074318.0
024 7 _ |a 10.2967/jnumed.120.254243
|2 doi
024 7 _ |a 2128/28689
|2 Handle
024 7 _ |a altmetric:94270132
|2 altmetric
024 7 _ |a pmid:33158907
|2 pmid
024 7 _ |a WOS:000709477900011
|2 WOS
037 _ _ |a FZJ-2020-04140
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ceccon, G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Early treatment response assessment using $^{18}$F-FET PET compared to contrast-enhanced MRI in glioma patients after adjuvant temozolomide chemotherapy
260 _ _ |a New York, NY
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642405012_8098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The goal of this study was to compare the value of contrast-enhanced MRI and O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET for response assessment in glioma patients after adjuvant temozolomide chemotherapy (TMZ). Methods: After biopsy or resection and completion of radiotherapy with concomitant TMZ, 41 newly diagnosed and histomolecularly characterized glioma patients (glioblastoma, 90%; age range, 20–79 y) were subsequently treated with adjuvant TMZ. MR and 18F-FET PET imaging were performed at baseline and after the second cycle of adjuvant TMZ. We obtained 18F-FET metabolic tumor volumes (MTVs) as well as mean and maximum tumor-to-brain ratios (TBRmean and TBRmax, respectively). Threshold values of 18F-FET PET parameters to predict outcome were established by receiver-operating-characteristic analyses using a median progression-free survival (PFS) of ≥ 9 mo and overall survival (OS) of ≥ 15 mo as reference. MRI response assessment was based on the Response Assessment in Neuro-Oncology (RANO) working group criteria. The predictive value of changes of 18F-FET PET and MRI parameters on survival was evaluated subsequently using univariate and multivariate survival estimates. Results: After 2 cycles of adjuvant TMZ chemotherapy, a treatment-induced reduction of MTV and TBRmax predicted a significantly longer PFS and OS (both P ≤ 0.03; univariate survival analyses) whereas RANO criteria were not significant (P > 0.05). Multivariate survival analysis revealed that TBRmax changes predicted a prolonged PFS (P = 0.012) and changes of MTV a prolonged OS (P = 0.005) independent of O6-methylguanine-DNA-methyltransferase promoter methylation and other strong prognostic factors. Conclusion: Changes of 18F-FET PET parameters appear to be helpful for identifying responders to adjuvant TMZ early after treatment initiation.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 1
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Caroline, Tscherpel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dunkl, Veronika
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 5
700 1 _ |a Rosen, Jurij
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rapp, Marion
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schäfer, Niklas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 10
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 11
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 12
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 13
|e Corresponding author
773 _ _ |a 10.2967/jnumed.120.254243
|g p. jnumed.120.254243 -
|0 PERI:(DE-600)2040222-3
|n 7
|p 918-925
|t Journal of nuclear medicine
|v 62
|y 2021
|x 0022-3123
856 4 _ |u https://juser.fz-juelich.de/record/885860/files/Galldiks_JNuclMed_Early%20treatment%20response....pdf
856 4 _ |u https://juser.fz-juelich.de/record/885860/files/Ceccon_2020_JNuclMed__FINAL_Early%20treatment....pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885860/files/Galldiks_JNuclMed_Early%20treatment%20response....pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/885860/files/jnumed.120.254243.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885860
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)143792
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2021
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21