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The real-time flux dynamics of up to three superconducting quantum interference devices (SQUIDs) are

studied by numerically solving the time-dependent Schrödinger equation. The numerical results are used to

scrutinize the mapping of the flux degrees of freedom onto two-level systems (the qubits) as well as the

performance of the intermediate SQUID as a tunable coupling element. It is shown that the qubit representation

yields a good description of the flux dynamics during quantum annealing and the presence of the tunable coupling

element does not have negative effects on the overall performance. Additionally, data obtained from a simulation

of the dynamics of two-level systems during quantum annealing are compared to experimental data produced

by the D-Wave 2000Q quantum annealer. The effects of finite temperature are incorporated in the simulation

by coupling the qubit system to a bath of two-level systems. It is shown that an environment modeled as

noninteracting two-level systems coupled to the qubits can produce data which matches the experimental data

much better than the simulation data of the qubits without coupling to an environment and better than data

obtained from a simulation of an environment modeled as interacting two-level systems coupling to the qubits.

DOI: 10.1103/PhysRevA.101.012327

I. INTRODUCTION

Theoretically, an ideal quantum computer is described in
terms of two-level systems, the qubits [1]. However, almost
all currently popular technologies such as ion traps [2–7],
quantum dots [8,9], or superconducting circuits [10,11] em-
ploy physical devices which are only approximately described
by two-level systems [12]. Among these, trapped ions may
be described in the two-level approximation under conditions
discussed in Ref. [13]. Single-electron quantum dots can be
described as two-level systems if the orbital wave function
is neglected. However, two-electron [9,14] and three-electron
systems [15,16] confined in quantum dots are again only
approximately described by two-level systems, and leakage
out of the computational space may need to be taken into
account [15,17,18].

For superconducting circuits, it depends on the particular
circuit design how well the two relevant energy levels, which
define the qubit states, are separated from the higher energy
levels. For instance, the phase qubit [19,20] and the transmon
[21], an extension of the charge qubit [22–24], have rather
small anharmonicities. Thus, leakage to higher energy levels
is a major issue when performing gate operations [25–30] and
is typically alleviated by the use of pulse-shaping techniques
[25–27,31–33]. Flux qubits, on the other hand, have a strong
anharmonicity and are less prone to excitations to higher
energy levels [11,32,34–36] as long as the qubit is not driven
too strongly [37].

In this study we focus on the superconducting quantum in-
terference device (SQUID)-based flux qubit [34,38,39], which
is used in the D-Wave quantum annealer [40,41]. Due to
the large superconducting loop needed for the SQUID-based
qubit, it is sensitive to flux noise which limits the coherence
time [10].

Other flux qubits, commonly used for gate-based quantum

computing, are the three-junction qubit [42–45], the C-shunt

flux qubit [46–48], and the fluxonium qubit [49–51]. For the

three-junction qubit and the fluxonium qubit, the large induc-

tance is realized by using two or more Josephson junctions.

In this way, the loop size and thus the sensitivity to flux noise

can be reduced [52]. The C-shunt flux qubit is a capacitively

shunted variant of the flux qubit with improved coherence

when operated away from the degeneracy point [46]. There

is an ongoing discussion about the role of decoherence during

quantum annealing [53–58].

In this paper we address three questions. First, we study the

flux dynamics of the SQUIDs used in the D-Wave quantum

annealer, addressing the issue of how well these dynamics are

captured by a qubit model.

Second, we investigate whether the presence of the SQUID

used as a tunable coupler in the D-Wave device affects the

performance of the quantum annealing process. To answer

the first two questions, we study the dynamics of the flux

degrees of freedom of two SQUIDs functioning as qubits

and their tunable coupler, a third SQUID, by solving the

time-dependent Schrödinger equation (TDSE) for the model

Hamiltonian in terms of flux degrees of freedom. So far,

studies including higher energy levels have been limited to

four-level qudits [59,60].

The approach that we adopt in this paper is to start from

an idealized model of the SQUIDs which does not take into

account fabrication variations of circuit elements or stray

fluxes induced by the control lines. That is, in the idealized

model, the two SQUIDs functioning as qubits are equal and

the complete system can be regarded as a perfect device.

The third question we consider is to what extent the data

produced by a D-Wave quantum annealer can be described by
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quantum annealing of the qubit model including environment

effects. In order to do so, we study the dynamics of a two-qubit

system interacting with an environment of two-level systems,

representing, e.g., a heat bath [61,62] or a collection of defects

described by noninteracting two-level systems [63–65], by

solving the corresponding TDSE.

The structure of the paper is as follows. In Sec. II we give

a short introduction to quantum annealing and its relation to

optimization problems. Section III contains a description of

the SQUID-based model which we simulate. The mapping of

the model onto the qubit model is given in Sec. IV. The flux

dynamics of the SQUID model are simulated by solving the

TDSE using the method described in Sec. V. The results of the

simulation are presented in Sec. VI. In Sec. VII we describe

the two different models for the bath of two-level systems

coupled to the qubit system and discuss the simulation and its

results in comparison to data obtained from a D-Wave 2000Q

quantum annealer. We conclude with a summary in Sec. VIII.

II. THEORETICAL BACKGROUND

In general, the Hamiltonian describing a quantum anneal-

ing process can be written as

H (s) = A(s)Hinit + B(s)Hfinal, (1)

where Hinit is the initial Hamiltonian whose ground state

defines the state in which the system is prepared initially,

Hfinal denotes the Hamiltonian at the end of the annealing

process and whose ground state is the one to be determined,

s = t/ta ∈ [0, 1] is the rescaled (dimensionless) time, and ta
is the total annealing time. The functions A(s) and B(s) de-

termine the energy scale (in our case GHz) and the annealing

scheme. They satisfy |A(0)| � 1 and B(0) ≈ 0, and A(1) ≈ 0

and |B(1)| � 1 with respect to the corresponding energy scale.

From the adiabatic theorem [66], it follows that the system

stays in the ground state of the instantaneous Hamiltonian

H (s) during the annealing process if ta → ∞ such that for

s = 1 the system is in the ground state of Hfinal. Let �E j (s)

denote the difference between the energy of the ground state

|GS(s)〉 and the jth excited state |ES j (s)〉 at the rescaled time

s. A finite ta can be sufficient for the system to stay in the

ground state if [67,68]

max
s∈[0,1]

|〈ES j (s)| ∂sH (s) |GS(s)〉|
�E j (s)2

≪ ta. (2)

Quantum annealing can be used to solve optimization

problems that can be mapped onto the Hamiltonian Hfinal. The

class of so-called quadratic unconstrained binary optimization

(QUBO) problems can be mapped onto the Ising-spin model

of the form

HQUBO = −
N

∑

k=1

hkSk −
∑

1� j<k

J jkS jSk, (3)

where N is the number of binary variables Sk ∈ {−1, 1},
and hk and J jk are dimensionless real numbers defining the

particular QUBO. The set of variables {Sk} that minimizes

Eq. (3) gives the solution of the QUBO problem.

Quantum annealing can, at least in principle, find (one of)

the ground state(s) of the Ising-spin Hamiltonian (3) [69] or,

FIG. 1. Sketch of a SQUID with a CJJ loop. The magnetic fluxes

ϕ and ϕJ are the dynamical variables of the system. The external

fluxes ϕx and ϕx
J are used to control the operation of the device.

equivalently, solve the corresponding QUBO problem. For

this purpose, the two-value variables Sk are replaced by the

Pauli-Z matrices σ z
k

with eigenvalues ±1 and eigenstates |↑〉
and |↓〉 such that Eq. (3) transforms into

HIsing = −
N

∑

k=1

hkσ
z
k −

∑

1� j<k

J jkσ
z
j σ

z
k . (4)

The product states of the σ z eigenstates define the so-called

computational basis and are eigenstates of Eq. (4). The ground

state of the Hamiltonian (4) can then be found by quantum

annealing with Hfinal replaced by HIsing in Eq. (1). For quantum

annealing, the simplest choice for Hinit is the Hamiltonian of

spins in a transverse field [69]

Htrans = −
N

∑

k=1

σ x
k , (5)

where σ x is the Pauli-X matrix. The ground state of this

Hamiltonian is given by the product state |+ · · · +〉, with

|+〉 = (|↑〉 + |↓〉)/
√

2.

Equation (4) is used to formulate optimization problems

for the quantum annealer manufactured by D-Wave Systems

Inc. [40]. By design, the parameters of the final Hamiltonian

are restricted to hk ∈ [−2, 2] and J jk ∈ [−1, 1], and the qubit

connectivity is given by the Chimera graph such that, in the

notation of Eq. (4), some J jk have to be set equal to zero

[70]. In the following sections we discuss the SQUID model

and describe the mapping of the SQUID model onto the qubit

model in terms of Eqs. (4) and (5).

III. SQUID MODEL

In this section we introduce the model Hamiltonian of the

three-SQUID system that is used to simulate the flux dynam-

ics during quantum annealing. Two of the three SQUIDs serve

as qubits, each qubit subspace being defined by projection

onto the two lowest-energy states of the individual SQUIDs.

The third SQUID acts as a tunable coupler between the two

other SQUIDs.

Figure 1 shows the circuit of a SQUID with a compound

Josephson junction (CJJ) loop. It is used as a building block

for the flux qubits and the effective coupling between them

in the D-Wave quantum annealer. Including the CJJ loop

effectively leads to a tunable Josephson junction [38]. The

two-qubit states correspond to the left-circulating and right-

circulating persistent current in the superconducting (main)

loop and the tunable Josephson junction is used to control

the annealing process. For the coupler element, the tunable

Josephson junction results in the tunable coupling strength

[71].
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The Hamiltonian of a SQUID with a CJJ loop is given by

[41,72,73]

HSQUID = −EC∂2
ϕ + EL

(ϕ − ϕx )2

2

− ECJ
∂2
ϕJ

+ ELJ

(

ϕJ − ϕx
J

)2

2

− EJ cos(ϕ) cos
(ϕJ

2

)

, (6)

where ϕ = 2π�/�0 = 2e� (we use h̄ = 1) is the dimension-

less magnetic flux in the main loop and ϕJ the dimensionless

magnetic flux in the CJJ loop, with �0 denoting the magnetic

flux quantum and e the electron charge. In addition, EC

and ECJ
are capacitive energies, EL and ELJ

are inductive

energies, and EJ is the Josephson energy. For an uncoupled

SQUID, the inductive energy EL is given by EL = 1/4e2L,

where L = Lmain + LJ/4 [41] is the total inductance. The

potential of the flux variable ϕ, V (ϕ) = EL(ϕ − ϕx )2/2 −
EJ cos(ϕJ/2) cos(ϕ), can be either a single potential well or

a double-well potential depending on the value of ϕJ. Thus, ϕJ

can be used to change the shape of the potential and also the

barrier height between the double wells [72,74]. This property

is used to control the annealing process via the external flux ϕx
J

[75] and to set the coupling strength of the coupling SQUID

[71]. The external flux ϕx can be used to tilt the potential,

thereby lowering one of the wells and raising the other one

[74]. In terms of the qubit model (see Sec. IV), the external

flux ϕx can be used to set the parameter hk of the Ising

Hamiltonian given in Eq. (4) [70].

A. Total Hamiltonian

So far, we have discussed the Hamiltonian of a single

SQUID. In this section we introduce the Hamiltonian of the

complete system consisting of the three SQUIDs. A tunable

coupling constant J jk [see Eq. (4)] is realized by inserting a

SQUID as a coupler element between the other two SQUIDs

[71,76]. For the SQUID that functions as the coupler element,

we denote the flux in the CJJ loop by ϕJ,0 and the one in the

main loop by ϕ0. Accordingly, energies that correspond to the

coupler main loop are labeled by an index 0 and those that

correspond to the coupler CJJ loop by an index “J,0”. The

external control flux ϕx
J,0 can be used to tune the coupling

strength between the SQUIDs. We label the fluxes of the

SQUIDs corresponding to the qubits with indices 1 and 2,

FIG. 2. Sketch of three SQUIDs to realize a tunable coupling.

The magnetic fluxes ϕi and ϕJ,i are the dynamical variables of the

system. The external fluxes ϕx
i and ϕx

J,i are used to control the

operation of the device. The parameters ϕx
1 , ϕx

2 , and ϕx
J,0 determine

the values of the parameters h1, h2, and J of the qubit model (4),

respectively.

respectively. Since in the idealized model, the SQUIDs are

equal and subject to the same annealing functions A(s) and

B(s), their energies and their external fluxes ϕx
J are equal.

Therefore, we drop the indices 1 and 2 in these cases. Al-

though the external fluxes ϕx
1 , ϕx

2 , and ϕx
J depend on time, we

do not write this explicitly for reasons of readability. A sketch

of the complete system is shown in Fig. 2.

By coupling SQUIDs, the inductive energies change such

that they are given by EL(1 + M2/LLeff ) for the SQUIDs rep-

resenting the qubits and by ELeff
= EL0

L0/Leff for the coupler,

where Leff = L0 − 2M2/L is the effective inductance of the

coupler element and M is the mutual inductance between the

coupler and the other SQUIDs’ main loops. In addition to

the modified Hamiltonians of the three SQUIDs, the interac-

tion terms

Hint =
M

Leff

EL

(

ϕ1 − ϕx
1

)(

ϕ0 − ϕx
0

)

+
M

Leff

EL

(

ϕ2 − ϕx
2

)(

ϕ0 − ϕx
0

)

+
M2

LLeff

EL

(

ϕ1 − ϕx
1

)(

ϕ2 − ϕx
2

)

(7)

have to be included [77]. The tunable coupler can be op-

erated without an external flux in the coupler main loop

if the junction asymmetry is negligible, i.e., the difference

between the critical currents (of the two junctions of the

coupler SQUID) is much smaller than the sum of these critical

currents [71]. Since we do not consider junction asymmetries

in the idealized model, we set ϕx
0 = 0. Collecting all terms,

the total Hamiltonian is given by

Htotal =
2

∑

i=1

[

− EJ cos(ϕi) cos
(ϕJ,i

2

)

+ ELJ

(

ϕJ,i − ϕx
J

)2

2
− ECJ

∂2
ϕJ,i

+ EL

(

1 +
M2

LLeff

)

(

ϕi − ϕx
i

)2

2
− EC∂2

ϕi

]

+ ELeff

ϕ2
0

2
− EC0

∂2
ϕ0

+ ELJ,0

(

ϕJ,0 − ϕx
J,0

)2

2
− ECJ,0

∂2
ϕJ,0

− EJ0
cos(ϕ0) cos

(ϕJ,0

2

)

+
M

Leff

EL

(

ϕ1 − ϕx
1

)

ϕ0 +
M

Leff

EL

(

ϕ2 − ϕx
2

)

ϕ0 +
M2

LLeff

EL

(

ϕ1 − ϕx
1

)(

ϕ2 − ϕx
2

)

. (8)

This is the final Hamiltonian for which we solve the TDSE without further simplification.
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B. Effective coupling

The idea of inserting the coupler element is that it leads to

a tunable effective coupling between the other two SQUIDs

[71,76,77] such that the interaction Hamiltonian takes the

form

H eff
int = C

(

ϕx
J,0

)

ϕ1ϕ2, (9)

where C(ϕx
J,0) is the effective coupling strength tunable by the

external flux ϕx
J,0 of the coupler CJJ loop.

To derive an approximate effective Hamiltonian that ex-

hibits such a coupling term, we first replace the flux of the

coupler CJJ loop ϕJ,0 by its approximate expectation value.

To obtain this expectation value, we expand the Hamiltonian

of the SQUID given in Eq. (6) to second order in ϕJ,0 − ϕx
J,0

and set ϕ0 = 0. The resulting Hamiltonian describes a shifted

harmonic oscillator

Hco =
E ′

LJ,0

2

[

ϕJ,0 −

(

ϕx
J,0 −

2EJ0
sin

(

ϕx
J,0/2

)

4E ′
LJ,0

)

]2

− ECJ,0
∂2
ϕJ,0

,

(10)

where E ′
LJ,0

= ELJ,0
+ EJ0

cos(ϕx
J,0/2)/4. The expectation

value of ϕJ,0 in its ground state can thus be identified as

〈ϕJ,0〉 = ϕx
J,0 −

2EJ0
sin

(

ϕx
J,0/2

)

4ELJ,0
+ EJ0

cos
(

ϕx
J,0/2

) . (11)

With ϕJ,0 replaced by 〈ϕJ,0〉, we can find a matrix T such that

the transformation

H eff = eiT (t )Htotale
−iT (t ) + i

(

d

dt
eiT (t )

)

e−iT (t ) (12)

of the total Hamiltonian yields an effective Hamiltonian which

contains an interaction term of the form (9). Choosing

T = T (t ) = i
M

L(1 + βeff )

(

ϕ1 − ϕx
1 + ϕ2 − ϕx

2

)

∂ϕ0
, (13)

where the external fluxes ϕx
1 and ϕx

2 depend on time,

βeff =
EJ0

ELeff

cos

(

〈ϕJ,0〉
2

)

, (14)

and expanding

cos

(

ϕ0 −
M

L(1 + βeff )

(

ϕ1 − ϕx
1 + ϕ2 − ϕx

2

)

)

(15)

to second order in (the products of) ϕ0, ϕ1 − ϕx
1 , and ϕ2 − ϕx

2 ,

we obtain the effective Hamiltonian

H eff =
2

∑

i=1

[

EL

(

1 +
M2

LLeff

βeff

1 + βeff

)

ϕ2
i

2
− EC∂2

ϕi
− EJ cos(ϕi) cos

(ϕJ,i

2

)

− ECJ
∂2
ϕJ,i

+ ELJ

(

ϕJ,i − ϕx
J

)2

2

]

+
2

∑

i=1

[

− EL

(

1 +
M2

LLeff

βeff

1 + βeff

)

ϕx
i ϕi

]

+
2

∑

i=1

[

− EL

M2

LLeff

βeff

1 + βeff

ϕx
j 
=iϕi

]

+ EL

M2

LLeff

βeff

1 + βeff

ϕ1ϕ2 −
(

EC0
+

2ECM2

L2(1 + βeff )2

)

∂2
ϕ0

+ ELeff
(1 + βeff )

ϕ2
0

2

+
M

L(1 + βeff )

(

i
d

dt

(

ϕx
1 + ϕx

2

)

− 2EC (∂ϕ1
+ ∂ϕ2

)

)

∂ϕ0
. (16)

In the basis defined by the transformation (12), we obtain

the term C(ϕx
J,0)ϕ1ϕ2 where the dependence on ϕx

J,0 is given

via 〈ϕJ,0〉 in βeff [see Eqs. (11) and (14)]. The only coupling

term between the coupler element and the other two SQUIDs

that remains is the last term in Eq. (16), which is expected

to be much smaller than the previous coupling terms since

EC ≪ EL.

Note that none of the approximations made to derive

Eq. (16) affect the simulation results, as these are obtained

by solving the TDSE for the Hamiltonian (8). However, as

discussed in the next section, the approximation (16) is nec-

essary to relate the external flux ϕx
J,0 to the coupling constant

J12 (denoted by J for two qubits), which appears in the Ising

Hamiltonian (4).

IV. MAPPING TO THE QUBIT MODEL

In this section we investigate the mapping of the flux model

(16) onto the qubit model (1) with Hfinal and Hinit given by

Eqs. (4) and (5), respectively. The two-qubit Hamiltonian

reads

H (s) = −A(s)
(

σ x
1 + σ x

2

)

− B(s)
(

h1σ
z
1 + h2σ

z
2 + Jσ z

1σ z
2

)

.

(17)

As we will see below, reducing Eq. (16) to the generic form

of Eq. (17) enforces a specific choice of the external fluxes

ϕx
i [see Eq. (21)] and gives a relation between J and ϕx

J,0 [see

Eq. (24)].

Since we have assumed the two SQUIDs to be identical,

the mapping to the qubit model is the same for both, and

therefore we omit the SQUID indices in this section. The two

lowest-energy states |g〉 and |e〉 of each SQUID for ϕx = 0

define the computational subspace [41]. We obtain them by

diagonalizing the first part in square brackets of Eq. (16) in ϕ

and ϕJ space (see Sec. V for the definition of the discretized

basis).

Note that the first summand given in Eq. (16) contains an

effective change of the inductive energy depending on the

value chosen for ϕx
J,0 (because βeff depends on it). Therefore,

the definition of the computational subspace changes with the

012327-4



REAL-TIME SIMULATION OF FLUX QUBITS USED FOR … PHYSICAL REVIEW A 101, 012327 (2020)

coupling strength. This leads to slightly different annealing

schemes, i.e., a dependence of A(s) and B(s) on ϕx
J,0, as

observed experimentally [41,71].

The computational basis states |↑〉 and |↓〉 are defined as

the eigenstates of the operator ϕ [and thus of the second part in

square brackets in Eq. (16)] inside the computational subspace

span{|g〉 , |e〉}. We obtain

|↑〉 = a |g〉 + b |e〉 =
∫ ∞

−∞

∫ ∞

−∞
dϕ dϕJu(ϕ, ϕJ) |ϕ ϕJ〉 , (18)

|↓〉 = a |g〉 − b |e〉 =
∫ ∞

−∞

∫ ∞

−∞
dϕ dϕJd (ϕ, ϕJ) |ϕ ϕJ〉 , (19)

where |a| = |b| = 1/
√

2 [41] and u(ϕ, ϕJ) and d (ϕ, ϕJ) are

the resulting amplitudes of the states |↑〉 and |↓〉 in ϕ- and

ϕJ-space. Note that |g〉 and |e〉 depend on the time-dependent

external flux ϕx
J , implying that the definition of the computa-

tional states changes with time. The projection of the operator

ẼLϕ with

ẼL = EL

(

1 +
M2

LLeff

βeff

1 + βeff

)

(20)

has eigenstates |↑〉 and |↓〉 with eigenvalues ±Ip(s)/2e,

respectively. Thus, in this subspace, ẼLϕ is represented

by Ip(s)σ z/2e and the first contributions in square brack-

ets in Eq. (16) are mapped to −�(s)σ x/2, where �(s) =
E1(s) − E0(s) is the energy gap between the ground state |g〉
and the first excited state |e〉.

To derive the coupling terms, we write the SQUID indices

i again. For the terms in σ z
i and σ z

1σ z
2 to scale with the same

annealing function B(s) [70], ϕx
i has to be set to

ϕx
i = hiγ

2eIp(s)M2

Leff

, (21)

where γ = maxϕx
J,0

βeff E
2
L/(1 + βeff )Ẽ2

L . Disregarding the con-

tribution of the last term in Eq. (16), we find that the Hamilto-

nian for ϕ0 effectively decouples from the qubit Hamiltonian

and thus the effective qubit Hamiltonian can be written as

H eff,q ≈ −
2

∑

i=1

(

�(s)

2
σ x

i + hiγ
I2

p (s)M2

Leff

σ z
i

)

−
EL

ẼL

I2
p (s)M4

LL2
eff

βeff

1 + βeff

γ
(

h1σ
z
2 + h2σ

z
1

)

+
E2

L

Ẽ2
L

I2
p (s)M2

Leff

βeff

1 + βeff

σ z
1σ z

2 . (22)

For all J ∈ [−1, 1], we have

−γ = −max
ϕx

J,0

βeff

1 + βeff

E2
L

Ẽ2
L

� −Jγ � max
ϕx

J,0

βeff

1 + βeff

E2
L

Ẽ2
L

= γ .

(23)

Thus, and because E2
Lβeff (ϕx

J,0)/Ẽ2
L (ϕx

J,0)[1 + βeff (ϕx
J,0)] is

monotonic, it is possible to find ϕx
J,0 such that

βeff

(

ϕx
J,0

)

1 + βeff

(

ϕx
J,0

)

E2
L

Ẽ2
L

(

ϕx
J,0

) = −Jγ (24)

for all J ∈ [−1, 1], and Eq. (22) becomes

H eff,q ≈ −
2

∑

i=1

�(s)

2
σ x

i − γ
I2

p (s)M2

Leff

( 2
∑

i=1

hiσ
z
i + Jσ z

1σ z
2

−
ẼL

EL

M2

LLeff

Jγ
(

h1σ
z
2 + h2σ

z
1

)

)

, (25)

which has the structure of an Ising model in a transverse

field. Comparing Eq. (25) to Eqs. (4) and (5), we can identify

A(s) = �(s)/2 and B(s) = γ I2
p (s)M2/Leff and see that

H eff,q ≈ −A(s)
(

σ x
1 + σ x

2

)

− B(s)

(

h1σ
z
1 + h2σ

z
2 + Jσ z

1σ z
2

−
ẼL

EL

M2

LLeff

Jγ
(

h1σ
z
2 + h2σ

z
1

)

)

, (26)

where the last term only adds a small contribution since M2 ≪
LLeff .

V. SIMULATION

This section starts with a brief description of the numerical

technique used to perform the simulation of the three-SQUID

model. Then we discuss the choice of the model parameters

that appear in Eq. (8) and explain the method by which we

numerically extract the annealing scheme and the qubit-qubit

coupling J , which appears in Eq. (17), from the dynamics of

the fluxes.

For the simulation of the time evolution of the system

defined by Eq. (8), we use the Suzuki-Trotter product-formula

algorithm [78,79] to numerically solve the TDSE

i∂t |ψ (t )〉 = H (t )|ψ (t )〉. (27)

The time-dependent Hamiltonian is discretized such that the

state vector |ψ (t )〉 can be updated by a time step τ to

|ψ (t + τ )〉 using the time-evolution operator U (t, t + τ ) =
exp[−iτH (t + τ/2)]. To implement the algorithm, we fix a

basis for the description of |ψ (t )〉 and a decomposition of the

Hamiltonian H (t ) =
∑

k Ak (t ) such that

e−iH (t )τ ≈ e−iA1(t )τ e−iA2 (t )τ · · · e−iAK (t )τ = Ut,1(τ ) (28)

is a good approximation for sufficiently small τ and the update

of the state vector can be performed with two-component

updates only. For a detailed description of how to choose the

Ak , see Ref. [79]. In our simulation, we use the second-order

approach given by

e−iH (t )τ ≈ Ut,1(τ/2)U †
t,1(−τ/2). (29)

Note that there is no need to diagonalize the Hamiltonian or

to store the full matrices representing the Hamiltonian or the

time-evolution operator.

For the description of the state |ψ〉, the fluxes ϕi through

the main loops are discretized, i.e., the wave function is

defined at λi discrete points ϕimin + li�ϕi, li = 0, . . . , λi − 1.

By studying the convergence of the numerical results as a

function of λi and �ϕi, we find that λ1 = λ2 = 47 and −2.0 �

ϕ1, ϕ2 � 2.0, and λ0 = 31 and −1.0 � ϕ0 � 1.0 provide a

good compromise between accuracy and computational work

to solve the TDSE. Since ELJ
≫ EJ and ELJ,0

≫ EJ0
, the
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TABLE I. Values of the device parameters appearing in the

Hamiltonian (8) and used in our numerical work.

Parameter Value Parameter Value

EC 4.68 GHz EC0
9.02 GHz

EL 3.48 THz EL0
15.67 THz

ECJ
133.02 GHz ECJ,0

213.50 GHz

ELJ
54.54 THz ELJ,0

354.18 THz

EJ 7.80 THz EJ0
18.72 THz

M 15.97 pH

Hamiltonian for ϕJ,i resembles an oscillator with small an-

harmonicity. In the harmonic-oscillator basis, the evolution of

ϕJ,i can be well described with the three lowest states and thus

the fluxes ϕJ,i through the CJJ loops can be discretized in the

harmonic-oscillator basis and labeled by |mi〉, mi = 0, 1, 2. In

summary, the state |ψ〉 is represented by

|ψ〉 =
∑

l0, l1, l2,

m0, m1, m2

φl0,m0,l1,m1,l2,m2
|l0m0l1m1l2m2〉 , (30)

where the amplitudes φl0,m0,l1,m1,l2,m2
are stored as an array

of λ1λ2λ0×33 ≈ 1.85 × 106 complex double-precision num-

bers. To store this array, approximately 30 MB of memory is

needed. Parallelization of the state updates is implemented

using OpenMP. Testing with decreasing time steps τ and

studying the convergence, we find that for τ = 1.5 × 10−5 ns

the results are sufficiently accurate. Due to this small time

step, one quantum annealing run of 5 ns takes about 16 h on a

24-core node of the supercomputer JURECA [80].

A. Parameters

The parameters of the Hamiltonian (8) and the values of the

time-dependent flux ϕx
J (s), which determines the annealing

scheme, were provided to us by D-Wave Systems Inc. and

are typical values of the D-Wave 2000Q processor [81]. The

device parameters used in the simulation are slightly modified

and listed in Table I and ϕx
J (s) is plotted in Fig. 3. The external

fluxes ϕx
i and ϕx

J,0 are computed from Eq. (21) and by solving

Eq. (24) numerically for ϕx
J,0(J ).

FIG. 3. External flux ϕx
J = 2π�x

J/�0 as a function of the nor-

malized annealing time s, as provided to us by D-Wave Systems Inc.

FIG. 4. Functions A(s) and B(s) of the annealing scheme as

provided to us by D-Wave Systems Inc. (dashed lines) in comparison

to the annealing scheme obtained from the full Hamiltonian for an

uncoupled SQUID (solid lines).

Using the provided parameters, we compute the annealing

scheme of a single SQUID by exact diagonalization of Eq. (6)

with ϕx = 0 and computing �(s) and Ip(s) as described in

Sec. IV. However, the resulting annealing scheme (data not

shown) does not match the data of the annealing scheme

provided to us by D-Wave Systems Inc. [81] [see Fig. 4

(dashed lines)]. Better agreement between the two annealing

schemes was found by using EC = 4.68 GHz (which was

computed from the provided capacitance directly) instead of

EC = 5.85 GHz (value provided by D-Wave Systems Inc.),

ELJ
= 54538 GHz instead of ELJ

= 73388 GHz, and M =
15.97 pH instead of M = 13.7 pH [see Fig. 4 (solid lines)].

The disagreement in B(s) for small s could not be removed

by slight variation of the model parameters. Changing ϕx
i

would reduce the disagreement for the single-qubit terms,

but at the same time Eq. (21) would be violated, effectively

yielding different functions for the single-qubit and two-qubit

σ z terms. Thus, we decided to keep ϕx
i as given by Eq. (21).

B. Estimation of the coupling strength and the annealing scheme

In order to map the full state (30) to the computational

space, we have to trace out the degrees of freedom of the

coupler element and project the resulting reduced density ma-

trix onto the computational subspace. To do so, we discretize

Eqs. (18) and (19) to obtain

|↑〉 =
∑

l,m

ul,m |lm〉 , (31)

|↓〉 =
∑

l,m

dl,m |lm〉 (32)

for a single qubit, and accordingly the product states for the

two-qubit states, where ulm and dlm are the discretizations of

u(ϕ, ϕJ) and d (ϕ, ϕJ), respectively. Since this projection is

not a unitary transformation, the trace of the projected density

matrix ρcomp will be less than one if there is leakage to higher

levels, i.e., if excitations to states outside the computational

subspace occur. The deviation of the trace from one is a

measure for the amount of leakage to higher levels.

To obtain the effective coupling strength and the annealing

scheme we proceed as follows. We start with the ideal qubit
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Hamiltonian (for simplicity, with h1 = h2 = 0)

H2(s) = −
�(s)

2

(

σ x
1 + σ x

2

)

+ C(s)σ z
1σ z

2 , (33)

where �(s) and C(s) are to be determined by comparison with

the data obtained by simulating the model (8). For fixed s ∈
[0, 1], the evolution determined by H2(s) of the initial state

|++〉 = (|↑〉 + |↓〉) ⊗ (|↑〉 + |↓〉)/2 and the expectation val-

ues 〈σ α
1 σ

β

2 〉 for σ α
i , σ

β

i ∈ {Ii, σ
x
i , σ

y

i , σ z
i } in the evolved state

can be calculated analytically. On the other hand, for any

time t , we can compute these expectation values directly from

the simulation of the time evolution of the initial state |++〉
expressed in flux degrees of freedom using Eqs. (31) and (32)

at a fixed value for s. The time evolution is governed by the

full Hamiltonian (8) based on the flux degrees of freedom with

fixed s. In this case, the expectation values are computed by

Tr(ρcompσ α
1 σ

β

2 ). We can then estimate �(s) and C(s), and thus

the effective coupling strength and the annealing scheme, by

fitting the analytical expressions to the simulation data.

VI. RESULTS

In this section we present the results obtained from the

simulation of the flux model described by the Hamiltonian

(8). First, we show that the mapping between J and ϕx
J,0 given

by Eq. (24) leads to the desired effective coupling strength.

Subsequently, we discuss the effective annealing scheme ob-

tained by using the procedure described in Sec. V B. We check

the results of the simulation based on the flux model and the

results of the qubit model against each other by comparing the

probabilities during and at the end of the annealing process.

Finally, we briefly discuss the data obtained from the D-Wave

quantum annealer in comparison to the simulation results.

A. Effective coupling and annealing scheme

In order to assess the mapping between J and ϕx
J,0 using

Eq. (24), we first study the effective mutual inductance Meff as

a function of J . We utilize the method described in Sec. V B

for various values of J and s = 1 [such that �(s) ≈ 0] to

determine the coupling strength. In this case, the analytical

result for the expectation value 〈σ y

1 σ z
2 〉 = sin[2C(1)t] can be

used for fitting. The obtained value for C(1) for each J is

then mapped onto the effective mutual inductance Meff (J ) =
C(1)/I2

p (1) = −Jγ M2/Leff and plotted against J . The result

for the effective inductance Meff (J ) between the qubits is

presented in Fig. 5 and shows good agreement between the

theoretical linear curve from the approximation and the sim-

ulation result. For J in the range [−1, 1], we can reach all

values for Meff in [−Meff,max, Meff,max] to good precision and

have thus obtained a transformation ϕx
J,0 ↔ J such that the

mapping J ↔ Meff is linear. Therefore, we can expect that

the mapping onto the qubit model and the resultant mapping

J ↔ ϕx
J,0 work reasonably well.

To assess the effective annealing scheme, we use the

method described in Sec. V B for different values s′ ∈ [0, 1],

using the analytical expression of the expectation value

〈

σ z
1σ z

2

〉

=
2�(s′)C(s′) sin2[

√

�(s′)2 + C(s′)2t]

�(s′)2 + C(s′)2
(34)

FIG. 5. Effective mutual inductance between the qubits as a

function of the qubit-qubit coupling J . The solid line shows the

expected behavior based on the analytical calculation presented in

Sec. IV. Asterisks show the simulation data.

for the fitting of �(s′) and C(s′). Figure 6 shows the effective

annealing scheme (data points) obtained in this way.

We find that the data points in Fig. 6 deviate from the an-

nealing scheme for an uncoupled qubit [solid lines, obtained

by using Eq. (6)], but they are in better agreement with the

annealing scheme obtained by using ẼL [see Eq. (20)] instead

of EL (dashed lines). Note that for the computation of the an-

nealing scheme, the single-SQUID Hamiltonian (6) is mapped

onto the effective Hamiltonian H eff,q ≈ −A(s)σ x
1 − B(s)h1σ

z
1 .

In the qubit model (17) this gives the same function for B(s)

as the term proportional to σ z
1σ z

2 in the case of two coupled

qubits. Because of the choice for ϕx
1 [see Eq. (21)], this should

also be the case for the SQUID model if the mapping to the

qubit model works well enough.

We find, in agreement with our analytical calculation, that

the effective coupling between the SQUIDs induces a shift in

the inductive energy, leading to shifts in the annealing scheme.

FIG. 6. Annealing scheme for the uncoupled single SQUID

model obtained by diagonalization of Eq. (6) with ϕx = 0 (solid

line) and with EL replaced by ẼL [see Eq. (20)], where ϕx
J,0 is set

to correspond to J = −1 (dashed line) to show the effect of coupling

on the annealing scheme. Blue asterisks and red squares are obtained

from the simulation of the coupled model (8) as described in Sec. IV.

Solid and dashed lines following the asterisks represent A(s) and

solid and dashed lines following the squares represent B(s). The

parameters are J = −1 and h1 = h2 = 0.
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FIG. 7. Probabilities of the four computational states |↑↑〉 (black

triangles), |↑↓〉 (green asterisks), |↓↑〉 (blue solid circles), and |↓↓〉
(red squares) during the annealing process for the qubit model

(dashed lines) and the full system (solid lines). Markers are used

to better distinguish the lines of the different states. For the data

from the simulation of the qubit model, every 120th data point is

plotted with a marker and for the data from the simulation of the full

system, every 6th point is plotted with a marker. For the full system,

additionally the probability of leakage (cyan open circles) is shown

using the right y axis. The annealing time was set to ta = 5 ns. The

parameters are J = −1, h1 = 0.96, and h2 = 0.94.

Including this shift, the effective annealing scheme can be

well described by the single-SQUID annealing scheme. The

influence of the coupling on the inductive energy was also

observed in experiments [71].

B. Comparison to the qubit model

The next step is to compare the overall performance and

the final probabilities between the real-time simulation with

the Hamiltonian given in Eq. (8) and the qubit Hamiltonian

given in Eq. (17).

As mentioned in Sec. V, the amount of leakage to higher

excited states can be computed by projecting the density

matrix onto the computational subspace. The projected den-

sity matrix can also be used to obtain the probabilities of

the computational basis states. As an illustration, in Fig. 7

we show the results for J = −1, h1 = 0.96, and h2 = 0.94.

For this choice of parameters, the ground state of Eq. (4) is

|↑↓〉. The total annealing time was set to ta = 5 ns for the

simulations of both the flux model and the qubit model.

This annealing time is much less than typically used on

the D-Wave processors (order of microseconds), but for com-

parison of the results of the flux simulation with the qubit

description only, this difference is unimportant. Note that in

this section our aim is to scrutinize the validity of the qubit

model as a description of the flux dynamics governed by

the Hamiltonian (8), not to compare simulation results with

experiments performed on the D-Wave quantum annealer (see

Secs. VI C and VII below).

FIG. 8. Success probability as a function of the minimal en-

ergy gap δE = mins E1(s) − E0(s) (computed from the qubit model)

during the annealing process. Each data point represents another

problem, i.e., other values for the parameters h1, h2, and J . A list with

all cases is given in Appendix A. Closed (red) circles show the results

for the qubit model and open circles originate from the simulation of

the flux model.

As seen from Fig. 7, there are small deviations from the

probabilities obtained from the qubit representation. Some

leakage, which has its maximum at about s = 0.6, where

the change in the probabilities of the computational states

is strongest, can also be observed. In general, the evolutions

of both the full model and the qubit model show the same

features.

In the following we refer to the probability of finding the

system at the end of the annealing process in the ground state

of Hamiltonian (4) as success probability. For the example

case shown in Fig. 7, the success probability for the flux model

and the qubit model differ only slightly.

In this example, the success probability is higher for the

qubit model. However, Fig. 8 shows that there are also cases

in which the success probability is lower for the qubit model.

Note that the annealing process does not start with equal

probability for all states because we start the annealing in

the ground state of the system instead of in the state |++〉 =
|+〉1 ⊗ |+〉2, since for B(s = 0) > 0, the ground state of the

qubit model (4) is not exactly the state |++〉 but a super-

position of all basis states. A simulation of the qubit model

comparing the annealing processes with the two different

initial states shows deviations during the annealing process,

but there is no significant difference in the success probability

(data not shown).

In summary, we observed an influence of the coupling on

the annealing scheme and some amount of leakage to higher

levels. The important question, however, is whether these

effects have consequences on the final success probability.

Figure 8 shows the success probability for many different

problems (defined in Appendix A) as a function of the

minimal energy gap between the ground state and the first

excited state during the annealing process, computed from

the qubit model. As can be seen in Fig. 8, for most of the

investigated cases, the effects on the success probability of

using a subspace of a larger system as the qubit instead of

an ideal qubit representation are rather small. The data points
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FIG. 9. Energy spectra during the annealing process for the three cases listed in Table II, with the parameters (a) J = −1, h1 = 0, and

h2 = 0.05; (b) J = −1, h1 = 0.96, and h2 = 0.94; and (c) J = 0.1, h1 = 0.3, and h2 = −0.3.

generated by the simulation based on Eq. (8) (open circles)

show, apart from a few exceptions, only small deviations from

the data points of the ideal qubit model (red closed circles).

Note that the success probability can be enhanced as well as

reduced compared to the ideal qubit model.

Another interesting observation can be made in Fig. 8.

For large minimal energy gaps δE = mins E1(s) − E0(s), the

system shows Landau-Zener behavior [82,83]. For small min-

imal energy gaps δE , the success probabilities form two

clusters, one cluster of probability approximately equal to 0.5

and a second one of probability approximately equal to 0.3.

Considering the energy spectra of these instances, we can

separate them into three classes. The first class would be the

one where the energies of all three excited states come close

to the ground-state energy and the success probability clusters

at roughly 0.3. The second class of problem instances has

a spectrum similar to the one shown in Fig. 9(a). Only the

energy of the first excited state comes close to the ground-state

energy. The energies of the second and third excited states are

much higher. For this class, the success probability clusters

around 0.5. The third class of problems has a spectrum similar

to the one shown in Fig. 9(b). The energies of the first and sec-

ond excited states come close to the ground-state energy. For

this class, the success probability depends on the particular

problem instance. The reason is that for degenerate ground

states, the probabilities to find these states are not necessarily

equal [84] and for problem instances which are close to these

degenerate cases with unequal probabilities, this imbalance

may have an influence when nonadiabatic transitions occur.

All instances which show larger deviations between the suc-

cess probabilities obtained from the qubit model and the flux

TABLE II. Percentage for finding the ground state (GS) on D-

Wave’s DW_2000Q_2 chip for three different problem instances and

four different annealing times. The minimal and final gap (in GHz)

are denoted by δE and �p, respectively.

GS probability in %

Case J h1 h2 δE �p 1 µs 20 µs 100 µs 1 ms

(a) −1 0 0.05 1.206 3.519 63.0 65.6 67.1 69.7

(b) −1 0.96 0.94 0.627 1.407 51.4 52.9 53.6 55.6

(c) 0.1 0.3 −0.3 5.481 14.07 92.5 96.2 97.6 98.5

model simulations (see Fig. 8) belong to the third class. A

possible explanation for these deviations might be that, in

some cases, due to the presence of the additional states in the

flux model, these unequal probabilities in the computational

subspace are different during the evolution than in the qubit

model. We leave a more detailed study of this phenomenon

for future work.

As noted in Ref. [85,86] and confirmed by our analytical

calculation in Sec. IV, there is some crosstalk between the

qubits [last term in Eq. (26)], leading to small offsets in the

parameters hi. Furthermore, a dependence of the annealing

scheme on the parameter ϕx
J,0 was found, also leading to small

discrepancies between the ideal qubit representation and the

full system. Additionally, for the mapping of J to ϕx
J,0, we

had to draw on an approximate analytical calculation which

may be another source for the small differences between the

results obtained from the two models. Nevertheless, the results

fit very well. Interestingly, the coupler element, which can be

viewed as part of the environment and might be the source of

additional noise, does not cause significant deviations in the

results compared to the results of the qubit description.

C. Comparison to D-Wave 2000Q data

Because we find good agreement between the system

described by the Hamiltonian (8) and the qubit model, we

compare the success probability for both these systems with

the percentage of successful runs on the D-Wave 2000Q quan-

tum annealer. In Appendix A (see Table III), we present the

data obtained by ten repetitions of annealing simultaneously,

992 (976) copies of the two-qubit problems distributed over

the D-Wave DW_2000Q_2 (DW_2000Q_2_1) chip, for an

annealing time of ta = 20 µs. Postprocessing and autoscaling

have been turned off for all experiments on the D-Wave

2000Q.

We find that, although the annealing time on the D-Wave is

much larger than for our simulations (20 µs instead of 5 ns),

a large fraction of the D-Wave data seems to agree (approxi-

mately) with the corresponding success probabilities obtained

from the simulation of the SQUID model (8) and its two-level

approximation. This agreement is probably accidental. The

annealing time of 5 ns was chosen to keep the real time to

solve the TDSE of the SQUID model within acceptable limits

as well as having some variation in the success probability
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at the end of the annealing process without having to use

too-small values for, or differences between, the parameters J

and hi. In spite of the large difference in annealing times, the

good agreement suggests that in the D-Wave device there are

physical processes at work that affect the annealing, processes

which are not incorporated in the SQUID model (8) or the

corresponding qubit model (26).

Concrete evidence for the relevance of such processes

is shown in Table II, where we present D-Wave data for

three different cases whose energy spectra are shown in

Figs. 9(a)–9(c). Because the spectra of these cases differ

significantly, we assume that they are a representative sub-

set of the cases studied previously. Data characterizing the

problem instances such as the minimal energy gap δE and

the problem gap �p of the final Hamiltonian are listed in

Table II as well as the frequency of runs finding the ground

states (|↓↑〉, |↑↓〉, and |↑↓〉 for the three cases, respectively)

on the D-Wave machine for four different annealing times.

The results reported in Table II were obtained by putting 992

copies of the two-qubit problems on the Chimera graph and

performing 1000 annealing runs.

Table II shows some additional interesting facts. First,

recall that for the shortest annealing time considered, i.e.,

1 µs, simulation of the quantum annealing process in the qubit

description yields the ground state with probability one for

the three cases listed. Clearly, as Table II shows, this is not

the case for the D-Wave data, not even if we increase the

annealing time to 1 ms, as is most evident for case (c). We

emphasize that these differences in the observed frequencies

for finding the ground state are not due to poor statistics

nor can they be attributed to the differences in the minimal

gaps δE . Correlating these observations with the energy-level

spectra shown in Fig. 9 suggests that the observed reduction

of the frequency for finding the ground state may be related

to the distribution of energy levels for s → 1. However, the

mechanism that causes the observed change of frequencies

when going from case (a) to (c) cannot be found within

the description of the quantum dynamics of the two-qubit

system. Explaining these experimental observations requires

considering additional physical processes.

The first process that comes to mind is the interaction of the

qubits with their environment at nonzero temperature. In the

next section we address this issue by solving the TDSE of the

two-qubit model (26) coupled to a bath of two-level systems,

complementing previous work that investigated the effects of

finite temperature on quantum annealing [56,58,87–91].

VII. SYSTEM COUPLED TO A BATH

The annealing process of the isolated two-qubit system

may be understood in terms of the adiabatic theorem. How-

ever, in the real world, the system modeling the two qubits is

in contact with an environment at finite temperature. In this

section we scrutinize the extent to which the coupling to a

heat bath, i.e., the presence of thermal fluctuations, affects

the annealing process. This, we hope, may shed light on the

annealing behavior observed on the D-Wave machine in the

cases studied.

We do not assume the heat bath to be Markovian but

instead we solve the TDSE of the system comprising the

two-qubit system and the bath. In order to be able to perform

such simulations, it is necessary to keep these models simple.

Therefore, it would be remarkable to find good quantitative

agreement between the results of the simulations and those

obtained with the D-Wave machine. Thus, the goal here is

limited to find out if such models can reproduce, qualitatively,

the trends observed in the D-Wave data.

We model the heat bath as a collection of two-level systems

[92,93] which might represent e.g., defects in the material.

Such models have been used to discuss noise and dephasing

in superconducting resonators and circuits [63–65,94–98]. We

assume that this heat bath is at thermal equilibrium, with a

temperature given by the operating temperature of the D-Wave

machine. We denote the inverse of this operating temperature

by β∗ = 0.588 ns (in units of h̄ = kB = 1), corresponding to

a temperature of T ≈ 13 mK.

The Hamiltonian of the system plus bath reads

H(t ) = HS(s = t/ta) + HB + λHSB, (35)

where λ controls the overall strength of the system-bath

interaction. The time evolution during the quantum annealing

process of the closed quantum system defined by the Hamilto-

nian (35) is obtained by solving the TDSE (27) with the initial

state

|�(t = 0)〉 = |++〉 ⊗ |�(β )〉. (36)

The method to prepare the thermal state |�(β )〉 and other

technical details are discussed in Appendix B.

The system Hamiltonian is given by

HS = A(s)
(

− σ x
1 − σ x

2

)

+ B(s)
(

− Jσ z
1σ z

2 − hz
1σ

z
1 − hz

2σ
z
2

)

(37)

and changes with time as a function of the annealing variable

s = t/ta. We consider two extreme cases for HB and HSB.

A. Model I

In the first case, the bath is modeled as a ring of two-level

systems represented by the Pauli matrices µn = (µx
n, µ

y
n, µ

z
n),

described by the Hamiltonian

HB = −K

NB
∑

n=1

(

rx
nµ

x
nµ

x
n+1 + ry

nµ
y
nµ

y

n+1 + rz
nµ

z
nµ

z
n+1

)

. (38)

Here and in the following NB denotes the number of bath

particles. The couplings rx
n , r

y
n, and rz

n are taken to be uniform

random numbers in the range [−1,+1] and K determines the

spectral range of HB. For random couplings it is unlikely that

the model (38) is integrable (in the Bethe-ansatz sense) or has

any other special features such as conserved magnetization.

The bath Hamiltonian (38) with random couplings has the

property that the distribution of nearest-neighbor energy levels

is Wigner-Dyson-like [61]. Extensive simulation work on

spin baths with very different degrees of connectivity [99]

suggests that as long as there is randomness in the system-bath

coupling and randomness in the intrabath coupling, the simple

model (38) may be considered as a generic spin bath [61].

The Hamiltonian describing the interaction of the two-qubit

system with the bath is taken to be

HSB = −rx
n,1µ

x
nσ

x
1 − r

y

n,1µ
y
nσ

y

1 − rz
n,1µ

z
nσ

z
1
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− rx
m,2µ

x
mσ x

2 − r
y

m,2µ
y
mσ

y

2 − rz
m,2µ

z
mσ z

2 , (39)

where n and m are chosen randomly from the set {1, . . . , NB}
such that n 
= m. The rα

n,1 and rα
m,2 are real-value random

numbers in the range [−1,+1].

B. Model II

In this case, the bath is modeled as a collection of nonin-

teracting two-level systems given by the Hamiltonian

HB = −�

NB
∑

n=1

rx
nµ

x
n + ry

nµ
y
n + rz

nµ
z
n, (40)

where the parameter �, together with the random numbers

rx
n, r

y
n, rz

n ∈ [−1, 1], determines the level splitting of each

two-level system. The interaction between the qubits and

the two-level systems of the bath is chosen such that each

qubit interacts with a different half of the bath. This type of

interaction is modeled by the Hamiltonian

HSB =
∑

α=x,y,z



σ α
1

NB/2
∑

n=1

rα
n,1µ

α
n + σ α

2

NB
∑

n=NB/2+1

rα
n,2µ

α
n



. (41)

C. Parameters

Obviously, to compare the simulation results with D-Wave

results it is necessary to solve the TDSE for the same time

interval as used on the D-Wave machine. In practice, this

requirement puts a severe constraint on the size of the prob-

lems for which one can solve the TDSE within a reasonable

amount of real time. Simulating the annealing process over

1 µs (the shortest annealing time possible on the D-Wave

machine) for a system comprising NB = 16 on a BullSequana

X1000 supercomputer (JUWELS [100]) takes about 4 h using

40 compute cores. Performing a simulation for NB = 28 two-

level systems in the bath takes about one week (400 000

time steps of 0.0025 ns using 5120 compute cores). Earlier

work which studied the TDSE dynamics of two spins coupled

to a spin bath [62] shows that the results for NB = 16 and

NB = 28 primarily differ in the statistical fluctuations on the

data (see also Appendix B). Therefore, we have chosen to

perform most simulations with NB = 16, repeating runs with

different random numbers to collect statistics, and use a few

runs with NB = 28 as an additional check on the data. We use

the annealing schedule of the DW_2000Q_2 chip (see Fig. 10)

which is the machine that we used for our experiments.

In the case of model I, the initial state of the bath

is prepared by projection with the operator exp(−βHB) =
exp[−βK (HB/K )], as explained in Appendix B. From

Eqs. (B2) and (B3) it is clear that baths with the same βK

[and the same rx
n , r

y
n and rz

n; see Eq. (38)] will have the

same thermal equilibrium properties. Therefore, we may use

K as an adjustable parameter to “calibrate” the temperature of

the bath with respect to the operating temperature of the D-

Wave machine on which we performed our experiments. For

instance, for a fixed choice of rx
n , r

y
n and rz

n, baths with (K =
5 GHz, β = 0.2 ns [T ≈ 38.2 mK]) and (K = 5/3 GHz, β =
0.6 ns [T ≈ 12.7 mK]) have the same thermal properties. On

the other hand, K sets the time scale of the dynamics of

the two-level systems of the bath. Simulations with K in

FIG. 10. Annealing schedule of the DW_2000Q_2 chip which

was used for the simulation with the environment. The red solid line

corresponds to A(s) and the blue dashed line corresponds to B(s).

the range [1 GHz, 5 GHz] (data not shown) reveal that the

primary quantity of interest, the success probability of the

two-qubit system at s = 1, does not change significantly with

K (in the mentioned range and for the same value of λ). This

leaves only the system-bath interaction λ as a parameter to fit

the simulation data to the D-Wave data.

In the case of model II, � plays the role of K in model

I, i.e., β� determines the thermal equilibrium properties of

the bath. Note that for modest values of NB, model II is too

simple to act as a genuine heat bath, but as a model for a

few defects interacting with the SQUIDs, it can be a realistic

choice [63–65]. Therefore, in this case, we set β ≈ β∗ and use

� and λ as fitting parameters.

D. Comparison to D-Wave 2000Q data

Figures 11(a)–11(c) depict the results of the simulation

with the heat bath (closed circles) averaged over ten different

random initializations of the heat bath with NB = 16. Results

for NB = 28 (asterisks) show that for each value of β, the

averages of ten samples of NB = 16 data are in good agree-

ment with the data obtained from one NB = 28 sample. The

solid line indicates the probability p0 of finding the ground

state of the isolated qubit system in thermal equilibrium for

HS at s = 1, i.e., p0 = exp(−βE0)/Z , where E0 is the ground-

state energy and Z = Tr[exp(−βHS )] is the partition function.

Qualitatively, the simulation data obtained using model I

(closed circles) nicely match the equilibrium line. The devi-

ations from the equilibrium line may be due to the freeze-out

where thermal transitions stop [91] and/or too-short annealing

times and/or the magnetic Foehn effect [101]. However, the

simulation data do not match the data generated on the D-

Wave machine (crosses). Assuming that the qubit system on

the D-Wave machine is in thermal equilibrium, we would

infer from Figs. 11(a)–11(c) that β ≈ 0.2 ns (corresponding

to T ≈ 38.2 mK), which is about a factor of 3 smaller than

the inverse operational temperature of about β∗ = 0.588 ns

(corresponding to T ≈ 13 mK).

For model II, we have searched the parameter space

1/8 GHz � � � 2 GHz and 1/2 GHz � λ � 2 GHz for

sets of (�, λ) which would fit the D-Wave results best.

These data are shown in Figs. 11(a)–11(c) as open circles
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FIG. 11. Success probability for three different problem instances (a) J = −1, h1 = 0, and h2 = 0.05; (b) J = −1, h1 = 0.96, and h2 =
0.94; and (c) J = 0.1, h1 = 0.3, and h2 = −0.3 as a function of the inverse temperature β with annealing time ta = 1 µs. Data points are

averages over ten simulation runs with different initializations of the heat bath described by model I (coupled two-level systems) with the

parameters K = 5 GHz, λ = 0.8 GHz, and NB = 16 (red closed circles) and described by model II (independent two-level systems) for � =
0.125 GHz and λ = 1 GHz (black open circle) and λ = 1.5 GHz (purple open square). Error bars indicate the standard deviation. Results for

NB = 28 (blue asterisks) are for the same parameters as the red closed circles but for a single sample. The gray solid line shows the success

probability in thermal equilibrium as a function of the inverse temperature β. The green cross represents the D-Wave result with annealing

time ta = 1 µs (see Table II).

(� = 0.125 GHz, λ = 1 GHz) and open squares (� =
0.125 GHz, λ = 1.5 GHz). For cases (b) and (c) (see

Table II), the former fit remarkably well to the D-Wave

data. However, we have not found a set (�, λ) which fits all

D-Wave data very well.

VIII. SUMMARY

We simulated the full system of three SQUIDs resembling

two qubits and one tunable coupler element as used in the

quantum annealer built by D-Wave Systems Inc. and found

that the higher energy levels as well as the presence of the

coupler element have observable effects on the annealing

process which however do not have a strong influence on the

final success probability compared to the ideal qubit model.

In contrast to the investigation of the influence of the higher

levels and resonators present in current systems for gate-based

quantum computing [29], we found that, apart from a few

exceptions, the effects are small for the cases of quantum

annealing examined.

Furthermore, we investigated in detail the derivation of the

qubit representation to obtain expressions for ϕx
i and J that led

to satisfying results (see Figs. 5–8). The simulation results are

in good agreement with effects encountered in this derivation

such as the change in the annealing scheme depending on

the choice of ϕx
J,0, which is also supported by findings in

experiments [71].

Simulation data for the SQUID model (8) and the corre-

sponding two-level approximation (26) for an annealing time

ta = 5 ns show remarkably good agreement with the D-Wave

data obtained with an annealing time ta = 20 µs, also in those

cases for which the success probability is substantially less

than one. Although this agreement might be accidental, it

suggests that the dynamics of the D-Wave quantum annealer

are more complicated than what can be described by a closed-

system model of the SQUIDs including higher levels and the

tunable coupler.

Therefore, as a first step, we have studied quantum an-

nealing in the presence of a heat bath. We solve the TDSE

of the two-qubit system [Eq. (26)] plus bath [Eq. (38)]

for three cases with qualitatively different energy spectra

of the two-qubit system (see Fig. 9). Comparing D-Wave

and simulation results for an annealing time of 1 µs, we

found that the simulation data for the success probabilities

of the two-qubit systems quite nicely agree with the cor-

responding thermal equilibrium values but also that these

probabilities are significantly larger than those obtained with

the D-Wave annealer. We have not found a common set

of parameters (β, K, λ) of the two-qubit–bath model that

reproduces the D-Wave results for the three different cases

considered.

Modeling the environment as a collection of noninteracting

two-level defects [see Eq. (40)] was found to yield a much

more appropriate description of the D-Wave data. Although

we could readily find values of the bath parameters � and λ

for which the solution of the TDSE yields results that are in

excellent agreement with D-Wave data for two of the three

different cases considered, we could not find a similar level

of agreement with these data for all three cases if we impose

the elementary requirement that the bath parameters � and

λ do not depend on the J and h that define the problem

Hamiltonian.

Unlike in the case of a time-independent problem, the

exchange of energy between the two qubits in the time-

dependent (annealing) field and the bath of two-level systems

seems to be an intricate process which, according to our simu-

lation data, depends on the model parameters in a complicated

manner. We leave a detailed study of this challenging problem

for future research.
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APPENDIX A: DATA

Table III contains a list with the parameters hi and J , the

minimal energy gap δE , and the success probabilities for the

problems used to generate Fig. 8.

TABLE III. Parameter values of the problems shown in Fig. 8.

(a) Success probability for the qubit model (ta = 5 ns). (b) Success

probability for the full model (ta = 5 ns). (c) Percentage of successful

runs on D-Wave’s DW_2000Q_2 and DW_2000Q_2_1 chips (ta =
20 µs).

Minimal gap Success probability

in %

h1 h2 J δE in GHz (a) (b) (c)

0.2 0.2 0.2 7.958914 99.9 99.5 99.7

0.2 −0.2 0 6.524809 99.8 99.6 95.8

0.3 −0.3 0.1 6.509859 99.9 99.6 96.2

0.1 −0.1 −0.1 4.817172 96.5 96.3 94.0

0.9 0.7 −1 4.660374 96.3 96.2 93.9

0.99 −0.8 1 4.367788 95.8 95.2 94.1

0.1 0.1 0 3.750846 93.0 92.8 80.5

0.3 0.3 −0.2 3.740396 96.2 96.2 81.4

0.07 −0.07 0 2.786031 82.1 81.6 66.8

0.07 0.07 0 2.786031 82.1 82.1 66.9

0.9 −0.8 1 2.766581 83.8 83.9 80.0

0.02 0.08 0.05 2.542547 77.7 77.6 71.2

0.99 −1 0.94 2.134413 84.8 57.9 48.3

0.05 0.05 0 2.092326 69.3 69.4 56.8

0 −0.05 0.05 1.585987 60.3 60.3 55.6

0 0.05 1 1.433807 69.0 67.6 64.4

0 0.05 −1 1.433807 69.0 69.1 65.3

0.01 0.04 0.025 1.419405 55.6 55.7 50.4

0.99 −1 0.96 1.366784 74.7 42.3 38.1

0.99 1 −0.96 1.366784 74.7 74.4 46.9

0.02 −0.02 −0.02 1.305954 51.1 50.6 43.8

0.02 0.02 0.02 1.305954 51.1 51.2 43.9

0.95 −0.99 0.98 1.145772 47.5 63.4 55.7

0.95 0.99 −0.98 1.145772 47.5 47.3 52.3

0.99 0.96 −1 1.018001 48.4 48.0 54.8

0.02 −0.02 0 0.939407 42.7 42.2 36.2

0 0.03 1 0.917871 61.8 60.8 59.0

0.96 −0.94 1 0.742309 50.7 57.5 55.1

TABLE III. (Continued.)

Minimal gap Success probability

in %

h1 h2 J δE in GHz (a) (b) (c)

0.96 0.94 −1 0.742309 50.7 50.0 54.0

0.98 −0.96 1 0.740480 45.4 56.3 53.4

0.98 0.96 −1 0.740480 45.4 44.7 51.0

0.01 −0.01 −0.01 0.716800 37.8 37.3 33.2

0.01 0.01 0.01 0.716800 37.8 38.0 33.9

0 0.02 −1 0.640932 57.9 57.8 57.0

0.01 0.009 0.002 0.543047 33.9 34.2 31.4

0.99 −1 0.98 0.510495 61.1 27.0 27.5

0.01 0.01 0 0.505201 33.5 33.8 31.7

0.99 −0.98 1 0.406202 35.3 49.3 47.2

0.99 0.98 −1 0.406202 35.3 34.6 45.6

0 −0.01 0.01 0.392828 33.0 33.2 31.6

0.005 0.005 0.005 0.388173 31.2 31.5 29.8

0.005 −0.005 −0.005 0.388173 31.2 30.7 29.1

0 0.01 1 0.343987 54.0 53.4 52.7

0 0.01 −1 0.343987 54.0 53.8 53.1

0.007 0 −0.01 0.302380 31.8 31.3 30.4

0.007 0 0.01 0.302380 31.8 32.0 30.5

1 0 −0.005 0.269309 54.0 53.1 52.8

1 0 0.005 0.269309 54.0 54.6 52.8

0.005 0.001 0.01 0.268263 31.4 31.6 30.2

0.005 −0.001 −0.01 0.268263 31.4 30.9 30.0

0.005 0 0.01 0.228548 30.9 31.2 29.6

0 0.005 0.5 0.193353 52.0 51.8 51.3

0 0.005 −0.5 0.193353 52.0 51.9 52.3

0.005 −0.001 0.01 0.187420 30.5 30.7 29.3

0.005 0.001 −0.01 0.187420 30.5 30.0 28.4

0 0.005 1 0.183074 52.0 51.5 50.7

0.005 0 −1 0.183074 52.0 51.8 50.7

0.003 0 0.01 0.145233 30.1 30.3 29.2

0 0.003 −1 0.114519 51.2 51.0 51.0

0 0.003 1 0.114519 51.2 50.8 50.1

APPENDIX B: NUMERICAL SOLUTION OF THE TDSE

The numerical solution of the TDSE for a pure state

of NB + 2 two-level systems requires computational re-

sources (memory and CPU time) proportional to 2NB+2.

For a brute force calculation of thermal expectation val-

ues Tr[exp(−βH)A(t )]/Tr[exp(−βH)] this number changes

to 2NB+2 × 2NB+2. Fortunately, this increase in cost can be

avoided by making use of random-state technology, reducing

the cost to that of solving the TDSE for one pure state [102]. If

|�〉 is a pure state, picked uniformly from the D = 2NB+2 di-

mensional unit hypersphere, one can show that for Hermitian

matrices X [102],

Tr(X ) ≈ D〈�|X |�〉, (B1)

and that the statistical errors resulting from approximating

Tr(X ) by D〈�|X |�〉 are small if D is large [102]. For large

baths, this property of the random pure state renders the

problem amenable to numerical simulation.

In the case at hand, we proceed as follows. First, we

generate a thermal random state of the bath system, meaning
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that we compute the pure state

|�(β )〉 =
e−βHB/2|�〉

〈�|e−βHB |�〉1/2
, (B2)

where β denotes the inverse temperature. For any bath observ-

able A(t ) we have [102]

〈A(t )〉 =
Tr[e−βHBA(t )]

Tr[e−βHB ]
≈ 〈�(β )|A(t )|�(β )〉. (B3)

The initial state of the whole system is then a product state

of the ground state of the two qubits at s = 0 and the thermal

pure state |�(β )〉, i.e.,

|�(t = 0)〉 = |++〉 ⊗ |�(β )〉. (B4)

Since the Hamiltonian (35) depends explicitly on time, we

can only solve Eq. (27) numerically by time stepping. For

this purpose, we use a Suzuki-Trotter product-formula-based

algorithm [103]. This algorithm employs a decomposition in

terms of unitary matrices and is unconditionally stable by

construction. All our simulations for the two qubits coupled

to a heat bath were carried out with the massively parallel

quantum-spin dynamics simulator (in-house software), which

is based on the same computational kernel as the massively

parallel quantum computer simulator [104].
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