000885867 001__ 885867
000885867 005__ 20230217124406.0
000885867 0247_ $$2doi$$a10.1103/PhysRevE.101.062133
000885867 0247_ $$2ISSN$$a1063-651X
000885867 0247_ $$2ISSN$$a1095-3787
000885867 0247_ $$2ISSN$$a1538-4519
000885867 0247_ $$2ISSN$$a1539-3755
000885867 0247_ $$2ISSN$$a1550-2376
000885867 0247_ $$2ISSN$$a2470-0045
000885867 0247_ $$2ISSN$$a2470-0053
000885867 0247_ $$2ISSN$$a2470-0061
000885867 0247_ $$2Handle$$a2128/25981
000885867 0247_ $$2altmetric$$aaltmetric:62647675
000885867 0247_ $$2pmid$$apmid:32688487
000885867 0247_ $$2WOS$$aWOS:000541417200003
000885867 037__ $$aFZJ-2020-04143
000885867 082__ $$a530
000885867 1001_ $$00000-0003-2184-5275$$aRichter, Jonas$$b0$$eCorresponding author
000885867 245__ $$aExponential damping induced by random and realistic perturbations
000885867 260__ $$aWoodbury, NY$$bInst.$$c2020
000885867 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-06-19
000885867 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-06-01
000885867 3367_ $$2DRIVER$$aarticle
000885867 3367_ $$2DataCite$$aOutput Types/Journal article
000885867 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605538893_2434
000885867 3367_ $$2BibTeX$$aARTICLE
000885867 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885867 3367_ $$00$$2EndNote$$aJournal Article
000885867 520__ $$aGiven a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the system's Hamiltonian. Based on projection operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of the unperturbed Hamiltonian, then this perturbation effectively leads to an exponential damping of the original dynamics. Employing a combination of dynamical quantum typicality and numerical linked cluster expansions, we demonstrate that our theoretical findings for random matrices can, in some cases, be relevant for the dynamics of realistic quantum many-body models as well. Specifically, we study the decay of current autocorrelation functions in spin-1/2 ladder systems, where the rungs of the ladder are treated as a perturbation to the otherwise uncoupled legs. We find a convincing agreement between the exact dynamics and the lowest-order prediction over a wide range of interchain couplings.
000885867 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885867 536__ $$0G:(DE-Juel1)jjsc09_20190501$$aManipulation and dynamics of quantum spin systems (jjsc09_20190501)$$cjjsc09_20190501$$fManipulation and dynamics of quantum spin systems$$x1
000885867 542__ $$2Crossref$$i2020-06-19$$uhttps://link.aps.org/licenses/aps-default-license
000885867 588__ $$aDataset connected to CrossRef
000885867 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000885867 7001_ $$0P:(DE-HGF)0$$aKnipschild, Lars$$b2
000885867 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b3
000885867 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj
000885867 7001_ $$0P:(DE-HGF)0$$aGemmer, Jochen$$b5
000885867 7001_ $$00000-0003-0608-0884$$aSteinigeweg, Robin$$b6
000885867 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.101.062133$$bAmerican Physical Society (APS)$$d2020-06-19$$n6$$p062133$$tPhysical Review E$$v101$$x2470-0045$$y2020
000885867 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.101.062133$$gVol. 101, no. 6, p. 062133$$n6$$p062133$$tPhysical review / E$$v101$$x2470-0045$$y2020
000885867 8564_ $$uhttps://juser.fz-juelich.de/record/885867/files/PhysRevE.101.062133.pdf$$yOpenAccess
000885867 8564_ $$uhttps://juser.fz-juelich.de/record/885867/files/PhysRevE.101.062133.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885867 909CO $$ooai:juser.fz-juelich.de:885867$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000885867 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000885867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000885867 9101_ $$0I:(DE-HGF)0$$60000-0003-0608-0884$$aExternal Institute$$b6$$kExtern
000885867 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885867 9141_ $$y2020
000885867 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000885867 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000885867 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2018$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885867 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000885867 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000885867 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885867 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000885867 980__ $$ajournal
000885867 980__ $$aVDB
000885867 980__ $$aI:(DE-Juel1)JSC-20090406
000885867 980__ $$aI:(DE-82)080012_20140620
000885867 980__ $$aUNRESTRICTED
000885867 9801_ $$aFullTexts
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2010.09.012
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.885
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031214-014548
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.863
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.53.385
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.52.1
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.43.2046
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.50.888
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06838
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.021013
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.021014
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.031057
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.142002
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.175702
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.180601
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6455/aabcdf
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.080603
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.9.021027
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.180301
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.98.062103
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01319852
000885867 999C5 $$1H.-P. Breuer$$2Crossref$$9-- missing cx lookup --$$a10.1093/acprof:oso/9780199213900.001.0001$$y2007
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.120602
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.99.052139
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.011119
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.91.012144
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.96.012157
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.99.050104
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.78.033608
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2232
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.130603
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.5.031039
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.87.050103
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.84.011136
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.067202
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.067202
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.205135
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.115130
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.017202
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2007-00369-2
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.216602
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.227206
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.144422
000885867 999C5 $$1J. Gemmer$$2Crossref$$9-- missing cx lookup --$$a10.1007/b98082$$y2004
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys444
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.050403
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.160404
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.110403
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.62.4365
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.047203
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.010401
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.070404
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.120601
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.104404
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2012.10.008
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.070603
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.094419
000885867 999C5 $$1H. De Raedt$$2Crossref$$oH. De Raedt Handbook of Theoretical and Computational Nanotechnology 2006$$tHandbook of Theoretical and Computational Nanotechnology$$y2006
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.174430
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2015.10.019
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.82.040103
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.094417
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.99.042139
000885867 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.155104