

OPTIMIZATION PROBLEMS FOR BENCHMARKING THE HYBRID SOLVER SERVICE VERSION 2 AND THE ADVANTAGE QPU

DWAVE QUBITS 2020, SEPTEMBER 2020 | MANPREET JATTANA

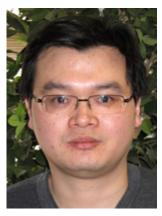
CONTENTS & TEAM

- 1. Vegetable garden optimization
- 2. 2-satisfiability
- 3. Tail assignment
- 4. Conclusions

Prof. Dr. Kristel Michielsen

Manpreet Jattana

Carlos Gonzalez Calaza

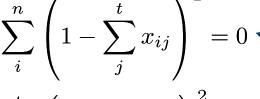

Dr. Madita Willsch

Dr. Dennis Willsch

Vrinda Mehta

Dr. Fengping
Jin

- Application: Companion planting in polyculture vegetable gardens
- Problem: Find an optimal placement of plants in the garden considering the characteristics of their nearest neighbors

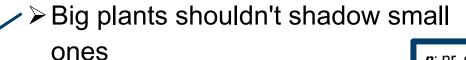


Overview

minimize

$$\sum_{ii'}^{n,n} J_{ii'} \left(1 + \sum_{jj'}^{t,t} x_{ij} C_{jj'} x_{i'j'} \right)$$

subject to


$$\sum_{j}^{t} \left(c_j - \sum_{i}^{n} x_{ij} \right)^2 = 0$$

$$\sum_{i,j}^{n,t} (i\%2 - s_j)^2 x_{ij} = 0$$

➤ Quadratic Assignment

Problem (QAP) with constraints

- ➤ Assign plants to pots in the garden:
 - $ightharpoonup \mathrm{Qubit}\ x_{ij}=1\ \mathrm{means}\ \mathrm{species}\ j$ is placed in pot i
 - ► All plants should have a good relationship with their neighbors
 - ► Use all available plants and pots

- >Flexible problem size
- >Embedding required

t: nr. of plant species to placeJ: connectivity between pots

n: nr. of pots in the garden

C: relationship between speciesc; nr. of plants of species j

 \mathbf{s}_{i} : size of species \mathbf{j}

Advantage vs DW2000Q: smaller problems (4 – 256 variables)

- Success rate (SR) under increasing relative chain strength (RCS) and annealing times (AT)
- Influence of Advantage's extra couplers on success rate:

Nr. of variables = 16

- Chimera embedding on Advantage
- Chimera embedding on DW2000Q
- Pegasus embedding on Advantage

0.8

0.6

0.4

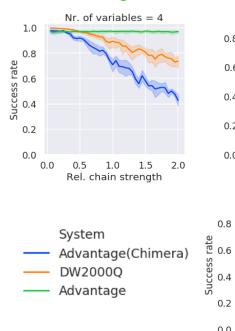
0.2

0.0

0.2

0.0

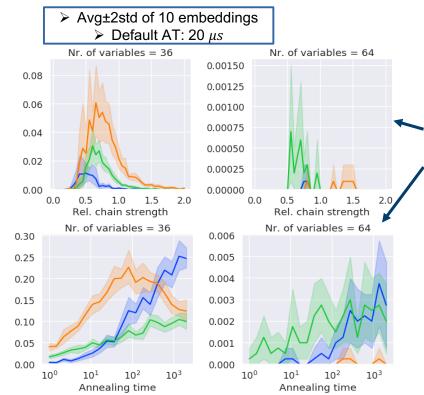
0.0


0.5

1.0

Rel. chain strength

Nr. of variables = 16

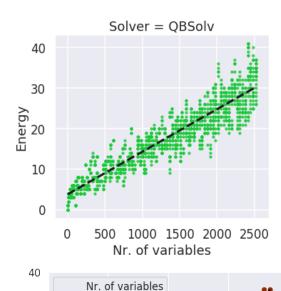

Annealing time

Avg±2std of 10 repetitions

Member of the Helmholtz Association

Different RCS

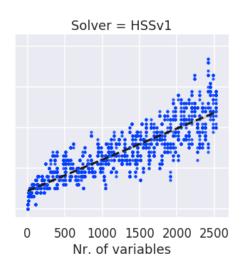
Observations:

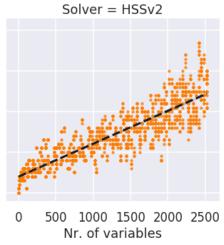

- Embedding up to 196 (64) vars possible on Advantage (DW2000Q)
- Successful up to 64 vars
- Tuning RCS increases SR
- Tuning AT increases SR (esp. on Advantage)
- ≤ 36 vars: similar embeddings in Chimera and Pegasus → DW2000Q better
- 64 vars: shorter embeddings on Pegasus
 - → Advantage better

September 2020

Page 5

Hybrid solver service (HSS) v1 vs v2: bigger problems (4 – 2520 variables)


35


Energy (HSSv2) 20 15

10

1000

3000

Experiment:

1760 problems solved using:

- > QBSolv (legacy software solver)
- HSSv1 (current hybrid solver)
- > HSSv2 (new hybrid solver)

Timing for 2520 vars problem with default parameters (n=10)

Energy

Solver		
HSSv1	28.1 ± 0.568	6.396 ± 0.023
HSSv2	29.0 ± 0.471	6.407 ± 0.003
QBSolv*	35.5 ± 0.972	66.056 ± 20.99
* Intel Core i5-4200U CPU @ 1.60GHz (Notebook		

Observations:

- > HSSv1, HSSv2 better & faster than QBSolv
- > HSSv2 better at smaller problems
- > HSSv1 better at bigger problems

Energy (HSSv1)

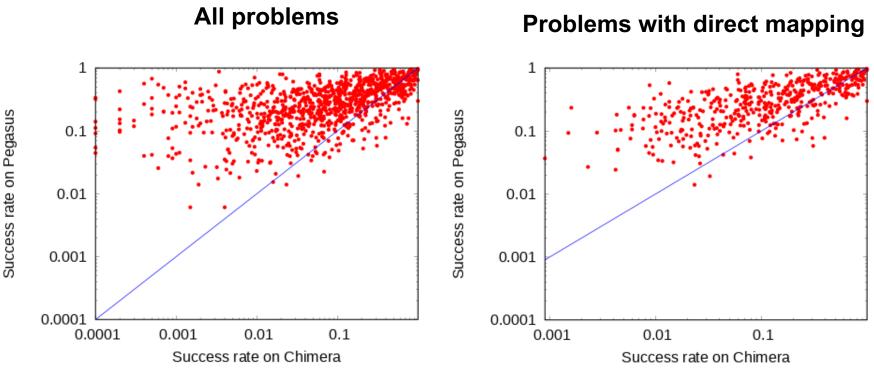
Runtime (s)

2-SATISFIABILITY

Overview

➤ Mathematical formulation:

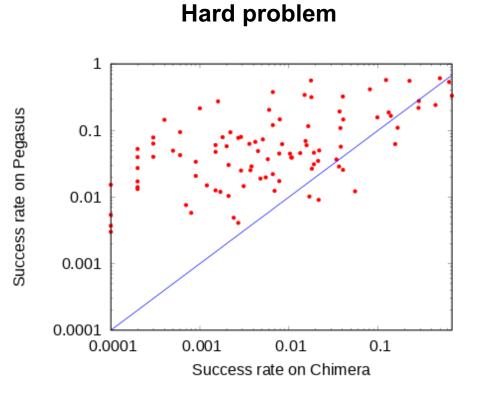
$$F = (L_{1,1} \lor L_{1,2}) \land (L_{2,1} \lor L_{2,2}) \land \dots \land (L_{M,1} \lor L_{M,2}),$$
 find assignment to x_i that makes F true where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0,1$


➤ Reformulation as Ising Problem:

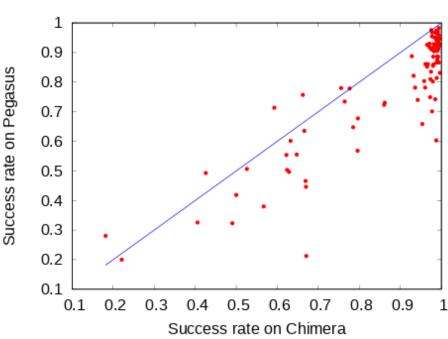
$$H_{2SAT} = \sum_{\alpha=1}^{M} g_{\alpha} h_{2SAT}(\epsilon_{\alpha,1} s_{i[\alpha,1]}, \epsilon_{\alpha,2} s_{i[\alpha,2]})$$
, where $g_{\alpha} > 0$ is a scaling factor, $\epsilon_{\alpha} = 1$ for x_i , $\epsilon_{\alpha} = -1$ for $\overline{x_i}$

- **Example:** for clause $(x_1 \lor x_2)$, $h_{2SAT} = s_1 s_2 (s_1 + s_2) + 1$
- ➤ Chosen problems: 18 variables with 19 clauses
 - > Properties: a known unique ground state and a highly degenerate first excited state

Success rate of the 1000 2-SAT problems for reformulation with g_{α} =1



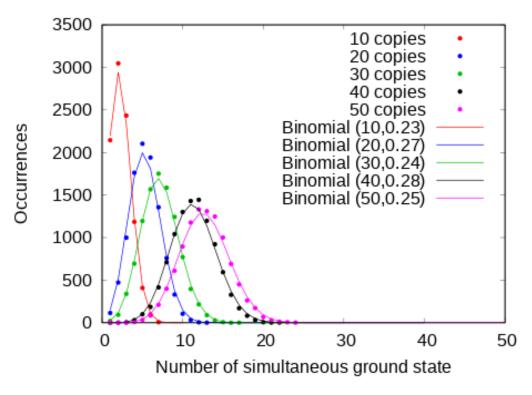
- Largest enhancement for cases with no direct mapping on Chimera but direct mapping on Pegasus
 - → improvement due to increased connectivity


- ➤ 476 problems on DW2000Q and 923 problems on Advantage have a direct mapping
- Advantage performs better for a majority of the problems, especially the difficult problems

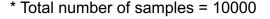
Success rate of 2 chosen 2-SAT problems for reformulation with random g_{lpha}

Easy problem

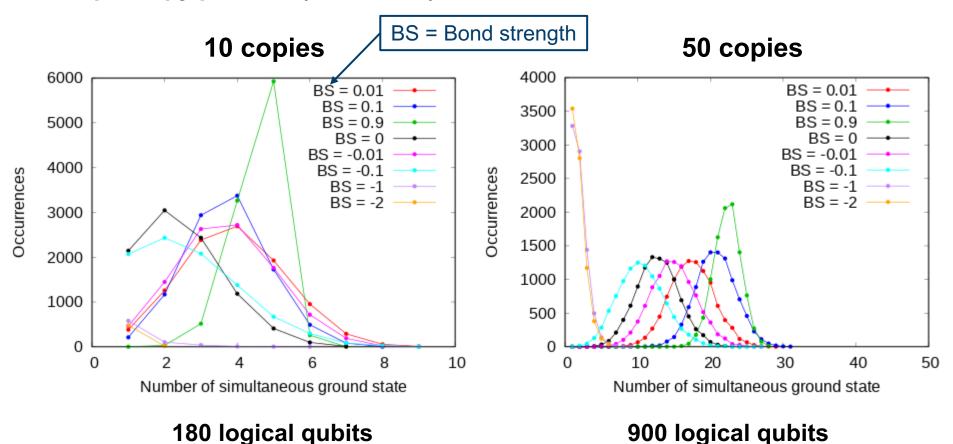
- For a hard problem Advantage performs better
- However, for an easy problemDW2000Qperforms better


2-SATISFIABILITY

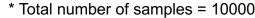
Multiple-copy problem


- ➤ To utilize the capacity of Advantage with a large number of qubits, copies of a 2-SAT problem are submitted to the system
- Further, the copies are connected through one bond to form a chain of copies, which becomes the new multiple-copy problem
 - \triangleright Properties: a unique ground state, which is a combination of the ground states for each copy, for a certain range of bond strengths (< 1.0)

Multiple-copy problem (unconnected)

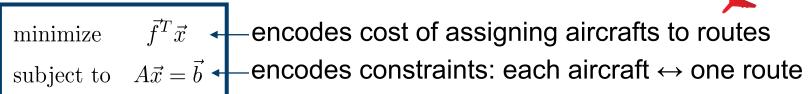


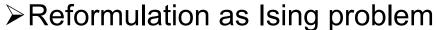
- Number of (logical) qubits ranges from 180 to 900
- The occurrence of number of simultaneous ground states approximately follows binomial distribution
 - Note that no combined state with simultaneous ground states for all copies could be found
- Parts of the solver corresponding to each copy work almost independently of each other



Multiple-copy problem (connected)

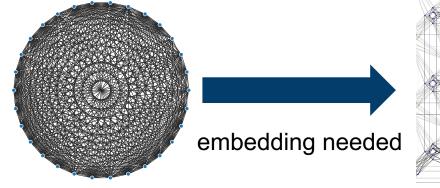
- Ground state for the new problems could not be found
- However, Hybrid solver v2 could find the ground state

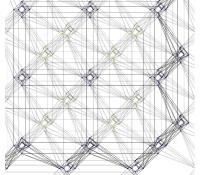



TAIL ASSIGNMENT

Overview

>Application: Airline planning

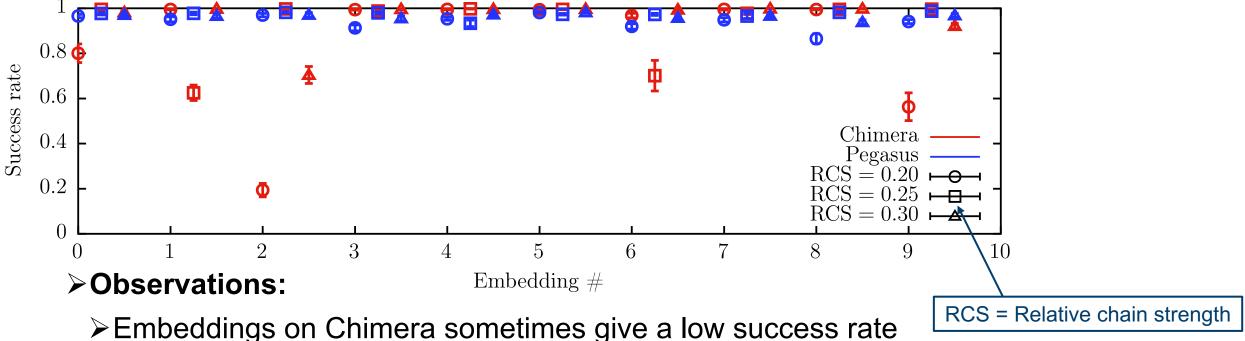


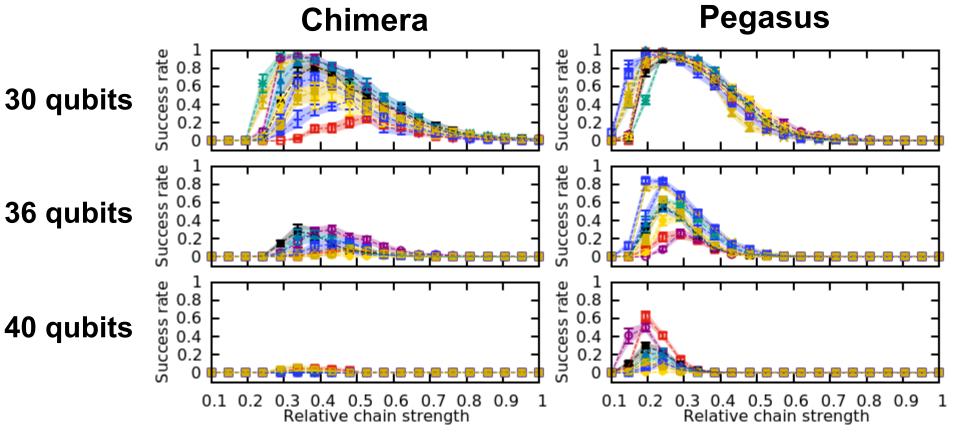


$$\min_{x_i=0,1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right) = \min_{s_i=\pm 1} \left(\sum_i s_i + \sum_{i < j} J_{ij} s_i s_j + \text{const} \right)$$

≥25-40 qubits almost fully-connected & 50-120 sparse Ising problems

In collaboration with:

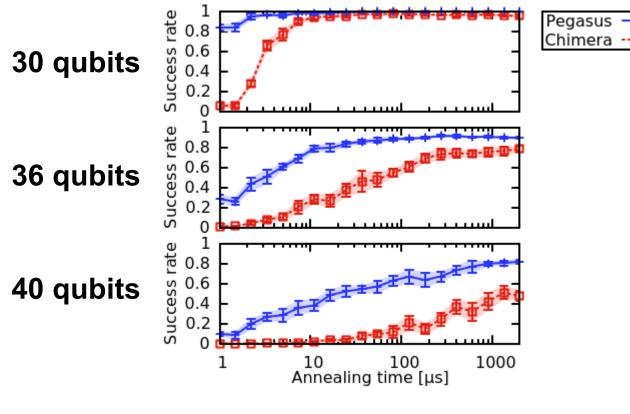

Marika Svensson
Jeppesen and
Chalmers University of Technology


25 qubits: "simple" problems

- > Embeddings on Pegasus have on average a high success rate
- > However: if the embedding for Chimera is good, Chimera outperforms Pegasus
 - → Conjecture: additional unused couplers on Pegasus disturb the annealing process

30-40 qubits: "harder" problems (90% nonzero couplers)

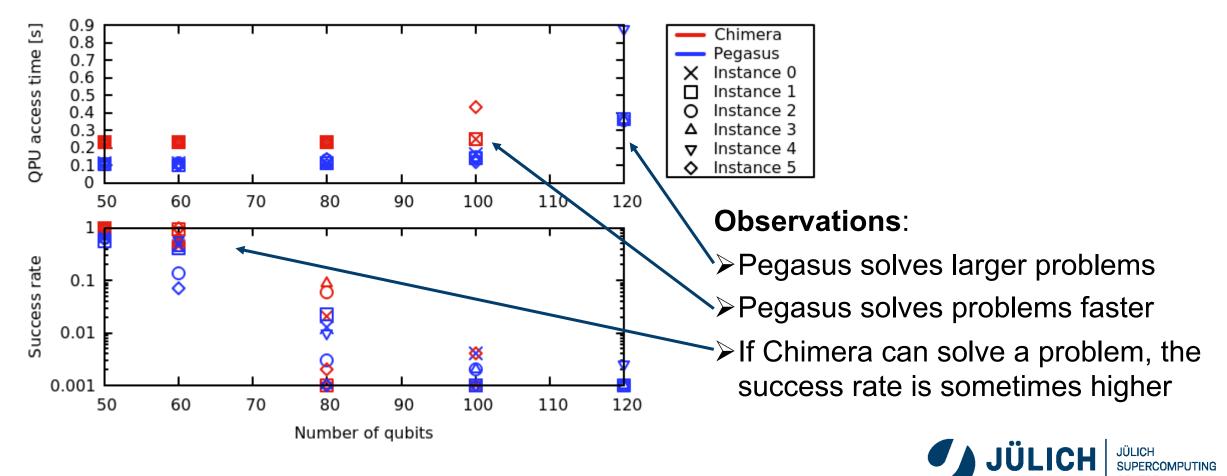
Scan of 10 different embeddings and 20 relative chain strengths:


Observations:

- In general,Pegasus performsbetter thanChimera
- Peak shifted to the left: Optimal chain strength is smaller

30-40 qubits: "harder" problems (90% nonzero couplers)

For the best embedding and chain strength found: Scan of the annealing time


Observations:

- Success rate increases as annealing time is increased
- Larger 30-40 qubits problems have a clear advantage on the D-Wave Advantage

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:

CONCLUSIONS

Advantage QPU:

- ➤ Problems that are "hard" enough to
 - 1. make use of the many additional couplers on Pegasus
 - 2. have embeddings with smaller chain lengths on Pegasus than Chimera show a clear advantage on the D-Wave Advantage
- > Problems that can be solved on both chips are solved faster on the D-Wave Advantage
- > However: problems that already fit well on Chimera tend to perform worse on Pegasus
 - → Conjecture: additional unused couplers on Pegasus disturb the annealing process

Hybrid solver v2:

- ➤ Garden problems: Better and ~10x faster than QBSolv (default parameters); better at smaller problems than HSSv1, but worse at bigger ones
- ► Hard multiple-copy problems, constructed from the 2-SAT problems, cannot be solved by the D-Wave Advantage, but can be solved on Hybrid solver v2