000885873 001__ 885873 000885873 005__ 20210130010542.0 000885873 0247_ $$2doi$$a10.3390/cancers12113080 000885873 0247_ $$2Handle$$a2128/25966 000885873 0247_ $$2altmetric$$aaltmetric:93208123 000885873 0247_ $$2pmid$$apmid:33105661 000885873 0247_ $$2WOS$$aWOS:000593665000001 000885873 037__ $$aFZJ-2020-04149 000885873 082__ $$a610 000885873 1001_ $$00000-0002-0678-5852$$aKebir, Sied$$b0 000885873 245__ $$aA Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma 000885873 260__ $$aBasel$$bMDPI$$c2020 000885873 3367_ $$2DRIVER$$aarticle 000885873 3367_ $$2DataCite$$aOutput Types/Journal article 000885873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603781719_18361 000885873 3367_ $$2BibTeX$$aARTICLE 000885873 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885873 3367_ $$00$$2EndNote$$aJournal Article 000885873 520__ $$aPseudoprogression (PSP) detection in glioblastoma remains challenging and has important clinical implications. We investigated the potential of machine learning (ML) in improving the performance of PET using O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) for differentiation of tumor progression from PSP in IDH-wildtype glioblastoma. We retrospectively evaluated the PET data of patients with newly diagnosed IDH-wildtype glioblastoma following chemoradiation. Contrast-enhanced MRI suspected PSP/TP and all patients underwent subsequently an additional dynamic FET-PET scan. The modified Response Assessment in Neuro-Oncology (RANO) criteria served to diagnose PSP. We trained a Linear Discriminant Analysis (LDA)-based classifier using FET-PET derived features on a hold-out validation set. The results of the ML model were compared with a conventional FET-PET analysis using the receiver-operating-characteristic (ROC) curve. Of the 44 patients included in this preliminary study, 14 patients were diagnosed with PSP. The mean (TBRmean) and maximum tumor-to-brain ratios (TBRmax) were significantly higher in the TP group as compared to the PSP group (p = 0.014 and p = 0.033, respectively). The area under the ROC curve (AUC) for TBRmax and TBRmean was 0.68 and 0.74, respectively. Using the LDA-based algorithm, the AUC (0.93) was significantly higher than the AUC for TBRmax. This preliminary study shows that in IDH-wildtype glioblastoma, ML-based PSP detection leads to better diagnostic performance 000885873 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000885873 588__ $$aDataset connected to CrossRef 000885873 7001_ $$0P:(DE-HGF)0$$aSchmidt, Teresa$$b1 000885873 7001_ $$0P:(DE-HGF)0$$aWeber, Matthias$$b2 000885873 7001_ $$0P:(DE-HGF)0$$aLazaridis, Lazaros$$b3 000885873 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b4 000885873 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b5 000885873 7001_ $$0P:(DE-HGF)0$$aKleinschnitz, Christoph$$b6 000885873 7001_ $$0P:(DE-HGF)0$$aHattingen, Elke$$b7 000885873 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b8 000885873 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b9 000885873 7001_ $$0P:(DE-HGF)0$$aGlas, Martin$$b10$$eCorresponding author 000885873 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers12113080$$gVol. 12, no. 11, p. 3080 -$$n11$$p3080 -$$tCancers$$v12$$x2072-6694$$y2020 000885873 8564_ $$uhttps://juser.fz-juelich.de/record/885873/files/2020_Kebir_Cancers.pdf$$yOpenAccess 000885873 8564_ $$uhttps://juser.fz-juelich.de/record/885873/files/2020_Kebir_Cancers.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000885873 909CO $$ooai:juser.fz-juelich.de:885873$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000885873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b4$$kFZJ 000885873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b5$$kFZJ 000885873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b9$$kFZJ 000885873 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000885873 9141_ $$y2020 000885873 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2018$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21 000885873 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000885873 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885873 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-21 000885873 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2018$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2019-12-21 000885873 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21 000885873 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000885873 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1 000885873 980__ $$ajournal 000885873 980__ $$aVDB 000885873 980__ $$aUNRESTRICTED 000885873 980__ $$aI:(DE-Juel1)INM-4-20090406 000885873 980__ $$aI:(DE-Juel1)INM-3-20090406 000885873 9801_ $$aFullTexts