001     885873
005     20210130010542.0
024 7 _ |a 10.3390/cancers12113080
|2 doi
024 7 _ |a 2128/25966
|2 Handle
024 7 _ |a altmetric:93208123
|2 altmetric
024 7 _ |a pmid:33105661
|2 pmid
024 7 _ |a WOS:000593665000001
|2 WOS
037 _ _ |a FZJ-2020-04149
082 _ _ |a 610
100 1 _ |a Kebir, Sied
|0 0000-0002-0678-5852
|b 0
245 _ _ |a A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603781719_18361
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pseudoprogression (PSP) detection in glioblastoma remains challenging and has important clinical implications. We investigated the potential of machine learning (ML) in improving the performance of PET using O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) for differentiation of tumor progression from PSP in IDH-wildtype glioblastoma. We retrospectively evaluated the PET data of patients with newly diagnosed IDH-wildtype glioblastoma following chemoradiation. Contrast-enhanced MRI suspected PSP/TP and all patients underwent subsequently an additional dynamic FET-PET scan. The modified Response Assessment in Neuro-Oncology (RANO) criteria served to diagnose PSP. We trained a Linear Discriminant Analysis (LDA)-based classifier using FET-PET derived features on a hold-out validation set. The results of the ML model were compared with a conventional FET-PET analysis using the receiver-operating-characteristic (ROC) curve. Of the 44 patients included in this preliminary study, 14 patients were diagnosed with PSP. The mean (TBRmean) and maximum tumor-to-brain ratios (TBRmax) were significantly higher in the TP group as compared to the PSP group (p = 0.014 and p = 0.033, respectively). The area under the ROC curve (AUC) for TBRmax and TBRmean was 0.68 and 0.74, respectively. Using the LDA-based algorithm, the AUC (0.93) was significantly higher than the AUC for TBRmax. This preliminary study shows that in IDH-wildtype glioblastoma, ML-based PSP detection leads to better diagnostic performance
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmidt, Teresa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weber, Matthias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lazaridis, Lazaros
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 4
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 5
700 1 _ |a Kleinschnitz, Christoph
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hattingen, Elke
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 9
700 1 _ |a Glas, Martin
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.3390/cancers12113080
|g Vol. 12, no. 11, p. 3080 -
|0 PERI:(DE-600)2527080-1
|n 11
|p 3080 -
|t Cancers
|v 12
|y 2020
|x 2072-6694
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885873/files/2020_Kebir_Cancers.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885873/files/2020_Kebir_Cancers.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885873
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145110
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2019-12-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2019-12-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2019-12-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-21
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21