000885877 001__ 885877
000885877 005__ 20210130010544.0
000885877 0247_ $$2doi$$a10.1364/OE.404123
000885877 0247_ $$2Handle$$a2128/25999
000885877 0247_ $$2altmetric$$aaltmetric:92521575
000885877 0247_ $$2pmid$$apmid:33114953
000885877 0247_ $$2WOS$$aWOS:000582499400039
000885877 037__ $$aFZJ-2020-04153
000885877 082__ $$a530
000885877 1001_ $$0P:(DE-Juel1)144531$$aFan, Xiaoming$$b0
000885877 245__ $$aThree dimensional drift control at nano-scale in single molecule localization microscopy
000885877 260__ $$aWashington, DC$$bSoc.$$c2020
000885877 3367_ $$2DRIVER$$aarticle
000885877 3367_ $$2DataCite$$aOutput Types/Journal article
000885877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603984244_13101
000885877 3367_ $$2BibTeX$$aARTICLE
000885877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885877 3367_ $$00$$2EndNote$$aJournal Article
000885877 520__ $$aSuper-resolution imaging based on single molecule localization of cellular structures on nanometer scale requires to record a series of wide-field or TIRF images resulting in a considerable recording time (typically of minutes). Therefore, sample drift becomes a critical problem and will lower the imaging precision. Herein we utilized morphological features of the specimen (mammalian cells) itself as reference markers replacing the traditionally used markers (e.g., artificial fiduciary markers, fluorescent beads, or metal nanoparticles) for sample drift compensation. We achieved sub-nanometer localization precision <1.0 nm in lateral direction and <6.0 nm in axial direction, which is well comparable with the precision achieved with the established methods using artificial position markers added to the specimen. Our method does not require complex hardware setup, extra labelling or markers, and has the additional advantage of the absence of photobleaching, which caused precision decrease during the course of super-resolution measurement. The achieved improvement of quality and resolution in reconstructed super-resolution images by application of our drift-correction method is demonstrated by single molecule localization-based super-resolution imaging of F-actin in fixed A549 cells.
000885877 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000885877 588__ $$aDataset connected to CrossRef
000885877 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b1$$ufzj
000885877 7001_ $$0P:(DE-Juel1)131957$$aBüldt, Georg$$b2
000885877 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanheng$$b3
000885877 7001_ $$0P:(DE-HGF)0$$aMusha, Zulipali$$b4
000885877 7001_ $$0P:(DE-HGF)0$$aZhang, Wenyuan$$b5
000885877 7001_ $$0P:(DE-HGF)0$$aRoncarati, Renza$$b6
000885877 7001_ $$00000-0001-9369-0263$$aHuang, Ruimin$$b7$$eCorresponding author
000885877 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.404123$$gVol. 28, no. 22, p. 32750 -$$n22$$p32750 -$$tOptics express$$v28$$x1094-4087$$y2020
000885877 8564_ $$uhttps://juser.fz-juelich.de/record/885877/files/oe-28-22-32750.pdf$$yOpenAccess
000885877 8564_ $$uhttps://juser.fz-juelich.de/record/885877/files/oe-28-22-32750.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885877 909CO $$ooai:juser.fz-juelich.de:885877$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b1$$kFZJ
000885877 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000885877 9141_ $$y2020
000885877 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT EXPRESS : 2018$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885877 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-02
000885877 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-02
000885877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000885877 920__ $$lyes
000885877 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000885877 980__ $$ajournal
000885877 980__ $$aVDB
000885877 980__ $$aUNRESTRICTED
000885877 980__ $$aI:(DE-Juel1)IBI-1-20200312
000885877 9801_ $$aFullTexts