000885878 001__ 885878
000885878 005__ 20230111074318.0
000885878 0247_ $$2doi$$a10.1093/bioinformatics/btaa872
000885878 0247_ $$2ISSN$$a0266-7061
000885878 0247_ $$2ISSN$$a1367-4803
000885878 0247_ $$2ISSN$$a1367-4811
000885878 0247_ $$2ISSN$$a1460-2059
000885878 0247_ $$2altmetric$$aaltmetric:92318606
000885878 0247_ $$2pmid$$a33045081
000885878 0247_ $$2WOS$$aWOS:000693171600023
000885878 037__ $$aFZJ-2020-04154
000885878 082__ $$a570
000885878 1001_ $$0P:(DE-Juel1)173713$$aJadebeck, Johann F$$b0$$ufzj
000885878 245__ $$aHOPS: high-performance library for (non-)uniform sampling of convex-constrained models
000885878 260__ $$aOxford$$bOxford Univ. Press$$c2020
000885878 3367_ $$2DRIVER$$aarticle
000885878 3367_ $$2DataCite$$aOutput Types/Journal article
000885878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627307704_11206
000885878 3367_ $$2BibTeX$$aARTICLE
000885878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885878 3367_ $$00$$2EndNote$$aJournal Article
000885878 520__ $$aThe C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software.
000885878 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000885878 588__ $$aDataset connected to CrossRef
000885878 7001_ $$0P:(DE-Juel1)166254$$aTheorell, Axel$$b1$$ufzj
000885878 7001_ $$0P:(DE-Juel1)139548$$aLeweke, Samuel$$b2$$ufzj
000885878 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b3$$eCorresponding author$$ufzj
000885878 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btaa872$$gp. btaa872$$n12$$p1776-1777$$tBioinformatics$$v37$$x1460-2059$$y2020
000885878 8564_ $$uhttps://juser.fz-juelich.de/record/885878/files/Jadebeck_2020%20HOPS%20-%20high-performance%20library%20for%20%28non-%29uniform%20sampling%20of%20convex-constrained%20models.pdf$$yRestricted
000885878 8564_ $$uhttps://juser.fz-juelich.de/record/885878/files/btaa872.pdf$$yRestricted
000885878 8564_ $$uhttps://juser.fz-juelich.de/record/885878/files/btaa872_licence%20%28HOPS%29.pdf$$yRestricted
000885878 909CO $$ooai:juser.fz-juelich.de:885878$$pVDB
000885878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173713$$aForschungszentrum Jülich$$b0$$kFZJ
000885878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166254$$aForschungszentrum Jülich$$b1$$kFZJ
000885878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139548$$aForschungszentrum Jülich$$b2$$kFZJ
000885878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich$$b3$$kFZJ
000885878 9130_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000885878 9141_ $$y2021
000885878 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-06$$wger
000885878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2018$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-06
000885878 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-06
000885878 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000885878 980__ $$ajournal
000885878 980__ $$aVDB
000885878 980__ $$aI:(DE-Juel1)IBG-1-20101118
000885878 980__ $$aUNRESTRICTED