Home > Publications database > HOPS: high-performance library for (non-)uniform sampling of convex-constrained models > print |
001 | 885878 | ||
005 | 20230111074318.0 | ||
024 | 7 | _ | |a 10.1093/bioinformatics/btaa872 |2 doi |
024 | 7 | _ | |a 0266-7061 |2 ISSN |
024 | 7 | _ | |a 1367-4803 |2 ISSN |
024 | 7 | _ | |a 1367-4811 |2 ISSN |
024 | 7 | _ | |a 1460-2059 |2 ISSN |
024 | 7 | _ | |a altmetric:92318606 |2 altmetric |
024 | 7 | _ | |a 33045081 |2 pmid |
024 | 7 | _ | |a WOS:000693171600023 |2 WOS |
037 | _ | _ | |a FZJ-2020-04154 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Jadebeck, Johann F |0 P:(DE-Juel1)173713 |b 0 |u fzj |
245 | _ | _ | |a HOPS: high-performance library for (non-)uniform sampling of convex-constrained models |
260 | _ | _ | |a Oxford |c 2020 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1627307704_11206 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software. |
536 | _ | _ | |a 583 - Innovative Synergisms (POF3-583) |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Theorell, Axel |0 P:(DE-Juel1)166254 |b 1 |u fzj |
700 | 1 | _ | |a Leweke, Samuel |0 P:(DE-Juel1)139548 |b 2 |u fzj |
700 | 1 | _ | |a Nöh, Katharina |0 P:(DE-Juel1)129051 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1093/bioinformatics/btaa872 |g p. btaa872 |0 PERI:(DE-600)1468345-3 |n 12 |p 1776-1777 |t Bioinformatics |v 37 |y 2020 |x 1460-2059 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885878/files/Jadebeck_2020%20HOPS%20-%20high-performance%20library%20for%20%28non-%29uniform%20sampling%20of%20convex-constrained%20models.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885878/files/btaa872.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885878/files/btaa872_licence%20%28HOPS%29.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:885878 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)139548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129051 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Innovative Synergisms |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-06 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOINFORMATICS : 2018 |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-06 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-06 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-06 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-06 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|