000885880 001__ 885880
000885880 005__ 20210130010545.0
000885880 0247_ $$2doi$$a10.3390/molecules25214875
000885880 0247_ $$2Handle$$a2128/25978
000885880 0247_ $$2pmid$$a33105720
000885880 0247_ $$2WOS$$aWOS:000593450800001
000885880 037__ $$aFZJ-2020-04156
000885880 082__ $$a540
000885880 1001_ $$0P:(DE-HGF)0$$aAhmad, Momin$$b0
000885880 245__ $$aDesign of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening
000885880 260__ $$aBasel$$bMDPI70206$$c2020
000885880 3367_ $$2DRIVER$$aarticle
000885880 3367_ $$2DataCite$$aOutput Types/Journal article
000885880 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603805192_6564
000885880 3367_ $$2BibTeX$$aARTICLE
000885880 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885880 3367_ $$00$$2EndNote$$aJournal Article
000885880 520__ $$aThe ability to crosslink Metal-Organic Frameworks (MOFs) has recently been discovered as a flexible approach towards synthesizing MOF-templated “ideal network polymers”. Crosslinking MOFs with rigid cross-linkers would allow the synthesis of crystalline Covalent-Organic Frameworks (COFs) of so far unprecedented flexibility in network topologies, far exceeding the conventional direct COF synthesis approach. However, to date only flexible cross-linkers were used in the MOF crosslinking approach, since a rigid cross-linker would require an ideal fit between the MOF structure and the cross-linker, which is experimentally extremely challenging, making in silico design mandatory. Here, we present an effective geometric method to find an ideal MOF cross-linker pair by employing a high-throughput screening approach. The algorithm considers distances, angles, and arbitrary rotations to optimally match the cross-linker inside the MOF structures. In a second, independent step, using Molecular Dynamics (MD) simulations we quantitatively confirmed all matches provided by the screening. Our approach thus provides a robust and powerful method to identify ideal MOF/Cross-linker combinations, which helped to identify several MOF-to-COF candidate structures by starting from suitable libraries. The algorithms presented here can be extended to other advanced network structures, such as mechanically interlocked materials or molecular weaving and knots.
000885880 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885880 536__ $$0G:(DE-Juel1)hkf6_20200501$$aForschergruppe Schug (hkf6_20200501)$$chkf6_20200501$$fForschergruppe Schug$$x1
000885880 588__ $$aDataset connected to CrossRef
000885880 7001_ $$00000-0001-9850-3594$$aLuo, Yi$$b1
000885880 7001_ $$0P:(DE-HGF)0$$aWöll, Christof$$b2
000885880 7001_ $$00000-0002-9557-2903$$aTsotsalas, Manuel$$b3$$eCorresponding author
000885880 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b4$$eCorresponding author
000885880 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules25214875$$gVol. 25, no. 21, p. 4875 -$$n21$$p4875 -$$tMolecules$$v25$$x1420-3049$$y2020
000885880 8564_ $$uhttps://juser.fz-juelich.de/record/885880/files/molecules-25-04875.pdf$$yOpenAccess
000885880 8564_ $$uhttps://juser.fz-juelich.de/record/885880/files/molecules-25-04875.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885880 909CO $$ooai:juser.fz-juelich.de:885880$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885880 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b4$$kFZJ
000885880 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885880 9141_ $$y2020
000885880 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000885880 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885880 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885880 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-03
000885880 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000885880 920__ $$lyes
000885880 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885880 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000885880 980__ $$ajournal
000885880 980__ $$aVDB
000885880 980__ $$aUNRESTRICTED
000885880 980__ $$aI:(DE-Juel1)JSC-20090406
000885880 980__ $$aI:(DE-Juel1)NIC-20090406
000885880 9801_ $$aFullTexts