001     885880
005     20210130010545.0
024 7 _ |a 10.3390/molecules25214875
|2 doi
024 7 _ |a 2128/25978
|2 Handle
024 7 _ |a 33105720
|2 pmid
024 7 _ |a WOS:000593450800001
|2 WOS
037 _ _ |a FZJ-2020-04156
082 _ _ |a 540
100 1 _ |a Ahmad, Momin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening
260 _ _ |a Basel
|c 2020
|b MDPI70206
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603805192_6564
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to crosslink Metal-Organic Frameworks (MOFs) has recently been discovered as a flexible approach towards synthesizing MOF-templated “ideal network polymers”. Crosslinking MOFs with rigid cross-linkers would allow the synthesis of crystalline Covalent-Organic Frameworks (COFs) of so far unprecedented flexibility in network topologies, far exceeding the conventional direct COF synthesis approach. However, to date only flexible cross-linkers were used in the MOF crosslinking approach, since a rigid cross-linker would require an ideal fit between the MOF structure and the cross-linker, which is experimentally extremely challenging, making in silico design mandatory. Here, we present an effective geometric method to find an ideal MOF cross-linker pair by employing a high-throughput screening approach. The algorithm considers distances, angles, and arbitrary rotations to optimally match the cross-linker inside the MOF structures. In a second, independent step, using Molecular Dynamics (MD) simulations we quantitatively confirmed all matches provided by the screening. Our approach thus provides a robust and powerful method to identify ideal MOF/Cross-linker combinations, which helped to identify several MOF-to-COF candidate structures by starting from suitable libraries. The algorithms presented here can be extended to other advanced network structures, such as mechanically interlocked materials or molecular weaving and knots.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Schug (hkf6_20200501)
|0 G:(DE-Juel1)hkf6_20200501
|c hkf6_20200501
|f Forschergruppe Schug
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Luo, Yi
|0 0000-0001-9850-3594
|b 1
700 1 _ |a Wöll, Christof
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tsotsalas, Manuel
|0 0000-0002-9557-2903
|b 3
|e Corresponding author
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 4
|e Corresponding author
773 _ _ |a 10.3390/molecules25214875
|g Vol. 25, no. 21, p. 4875 -
|0 PERI:(DE-600)2008644-1
|n 21
|p 4875 -
|t Molecules
|v 25
|y 2020
|x 1420-3049
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885880/files/molecules-25-04875.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885880/files/molecules-25-04875.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885880
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21