Influence of the Defect Structure on the Exsolution Behaviour of Nickel in Epitaxial $SrTi_{0.9}Nb_{0.05}Ni_{0.05}O_{3-\delta}$ Perovskite Oxide Thin Films

Electroceramics XVII I Virtual Darmstadt I 24 – 28 August 2020

M. L. Weber, M. Wilhelm, L. Jin, U. Breuer, C. Lenser, F. Gunkel, N. H. Menzler, R. Dittmann, R. Waser and O. Guillon

Synthesis of supported nanoparticles by metal exsolution

Idealized concept

Synthesis of supported nanoparticles by metal exsolution

Idealized concept

Exsolution process ABO₃

Thin film approach

Idealized concept

Ceramic SrTi_{0.9}Nb_{0.05}Ni_{0.05}O_{3-δ}

Thin film approach

Idealized concept

Ceramic $SrTi_{0.9}Nb_{0.05}Ni_{0.05}O_{3-\delta}$

Epitaxial model sytems

[Moritz L. Weber and Felix Gunkel, Journal of Physics: Energy 2019 1 (3), 2515-7655]

30 u.c.

Reduction

(800°C, 15h, 4% H₂/Ar)

Deposition with monolayer precision

High control of material properties:

- Crystal orientation
- Strain state
- Defect structure...

Well-defined model systems for exsolution studies

- Formation of highly dispersed nanoparticles
- Ni enrichment at the surface
- Magnetic transition to the ferromagnetic state
- Shift in the c-lattice parameter visible
- Release of Ni from the thin film lattice and the formation of metallic nanoparticles

Structural properties – accomodation of Ni within the host lattice

TEM dark-field imaging

Energy dispersive X-ray spectroscopy (EDXS)

Scale bars: 20nm

Structural properties – accomodation of Ni within the host lattice

TEM dark-field imaging

Reduced As-prepared

T

HR-STEM

HR-STEM

Scale bars: 20nm

Structural properties – accomodation of Ni within the host lattice

TEM dark-field imaging Energy dispersive X-ray spectroscopy (EDXS) Reduced As-prepared Sr Nb Ni 0 Scale bars: 20nm **HR-STEM HR-STEM** Selected area Selected area electron diffr. (SAED) electron diffr. (SAED) Reduced As-prepared Phase separation of Ni-rich nanostructures on the nano-scale Nanostructures reside in domain matching relationship within the host lattice Phase transition and reorganization of 10 nm 10 nm Ni-rich phase upon reduction 10 nm⁻¹ 10 nm⁻¹

Structural properties – domain matching epitaxy

Coincidence site lattice model (CSL)

Material	Lattice parameter (Å)	Periodicity n	F(%)
STN(Ni)	3.91	~8	0.18 %
NiO	4.178	~7.5	
STN(Ni)	3.91	~5.5	-0.1 %
Ni	3.581	~6	

Structural properties – domain matching epitaxy

Coincidence site lattice model (CSL)

Material	Lattice parameter (Å)	Periodicity n	F(%)
STN(Ni)	3.91	~8	0.18 %
NiO	4.178	~7.5	
STN(Ni)	3.91	~5.5	-0.1 %
Ni	3.581	~6	

- Structural properties determined by nature of the semi-coherent vertical interface
- Minimum CSL misfit, interfacial area, elastic stiffness tensors, dislocation density

Structural properties – accomodation of Ni within the host lattice

Structural properties – accomodation of Ni within the host lattice

- 1) Nanoscale phase separation
- → Exsolution of pre-formed nuclei as alternative exsolution pathway

Structural properties – accomodation of Ni within the host lattice

- 1) Nanoscale phase separation
- → Exsolution of pre-formed nuclei as alternative exsolution pathway

- 2) Decoupled nucleation and transport
- → Investigation of nanoparticle transport as isolated process

Influence of defect structure on metal exsolution

Tailoring the thin film defect structure based on the applied laser fluence *F*

- → Amount and initial velocity of ablated species
- → Plasma plume dynamics (e.g. scattering processes)

→ Incorporation of non-stoichiometry and respective defect structures resulting in systematic change in host stoichiometry and expansion of the *c*-lattice paramter

Influence of defect structure on metal exsolution

- → Highest nanoparticle density for stoichiometric thin films
 - → Non-stochiometry i.e. defect incorporation results in distortions of the host lattice and loss of lattice coherency

→ High lattice coherency of the host lattice promotes metal ecsolution to the perovskite surface

Conclusion & outlook

1) Alternative exsolution pathway via pre-formed nuclei

Conclusion & outlook

1) Alternative exsolution pathway via pre-formed nuclei

Conclusion & outlook

Reducing annealing **As-prepared** 1) Alternative Reduction exsolution pathway via pre-formed nuclei Decoupled Phase transition and Phase separation on formation and nanoscale transport transport of particles Stoichiometric host Non-stoichiometric host 2) Defect structures influence nanoparticle transport to the perovskite surface

Conclusion & outlook

1) Alternative **exsolution pathway** via pre-formed nuclei

2) Defect structures influence nanoparticle transport to the perovskite surface

Stoichiometric host

Nanoparticle-host interaction

- > Strain?
- Nanoparticle-host interface?
 - **Dislocation mobility?**

