001     885909
005     20210130010549.0
024 7 _ |a 10.1099/mic.0.000982
|2 doi
024 7 _ |a 0022-1287
|2 ISSN
024 7 _ |a 1350-0872
|2 ISSN
024 7 _ |a 1465-2080
|2 ISSN
024 7 _ |a 2059-9323
|2 ISSN
024 7 _ |a 2128/26333
|2 Handle
024 7 _ |a altmetric:93022649
|2 altmetric
024 7 _ |a pmid:33095135
|2 pmid
024 7 _ |a WOS:000603436200004
|2 WOS
037 _ _ |a FZJ-2020-04173
082 _ _ |a 570
100 1 _ |a Kuepper, Jannis
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance
260 _ _ |a Reading
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606895502_17559
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnolgie 1
520 _ _ |a Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms Corynebacterium glutamicum and Pseudomonas putida are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for C. glutamicum and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Otto, Maike
|0 P:(DE-Juel1)176853
|b 1
700 1 _ |a Dickler, Jasmin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Behnken, Swantje
|0 0000-0002-3246-7487
|b 3
700 1 _ |a Magnus, Jorgen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jäger, Gernot
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blank, Lars M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wierckx, Nick
|0 P:(DE-Juel1)176653
|b 7
|e Corresponding author
773 _ _ |a 10.1099/mic.0.000982
|0 PERI:(DE-600)2008736-6
|n 11
|p
|t Microbiology
|v 166
|y 2020
|x 1465-2080
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/885909/files/Kuepper%202020%20anthranilate%20evolution.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/885909/files/Kuepper%20et%20al%202020%20Microbiol%20000982%201-13.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/885909/files/Kuepper%202020%20anthranilate%20evolution.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/885909/files/Kuepper%20et%20al%202020%20Microbiol%20000982%201-13.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885909
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)176653
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROBIOL-SGM : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21