000885910 001__ 885910
000885910 005__ 20220930130256.0
000885910 0247_ $$2Handle$$a2128/26000
000885910 0247_ $$2URN$$aurn:nbn:de:0001-2020103015
000885910 0247_ $$2ISSN$$a1868-8489
000885910 020__ $$a978-3-95806-504-8
000885910 037__ $$aFZJ-2020-04174
000885910 041__ $$aEnglish
000885910 1001_ $$0P:(DE-Juel1)168537$$aPieronek, Lukas Julian$$b0$$eCorresponding author$$gmale$$ufzj
000885910 245__ $$aThe method of fundamental solutions for computing interior transmission eigenvalues$$f- 2020-08-21
000885910 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000885910 300__ $$a115 S.
000885910 3367_ $$2DataCite$$aOutput Types/Dissertation
000885910 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000885910 3367_ $$2ORCID$$aDISSERTATION
000885910 3367_ $$2BibTeX$$aPHDTHESIS
000885910 3367_ $$02$$2EndNote$$aThesis
000885910 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1603984610_12494
000885910 3367_ $$2DRIVER$$adoctoralThesis
000885910 4900_ $$aSchriften des Forschungszentrums Jülich. IAS Series$$v44
000885910 502__ $$aBTU Cottbus-Senftenberg, Diss., 2020$$bDr.$$cBTU Cottbus-Senftenberg$$d2020
000885910 520__ $$aThis thesis deals with a novel approach for analyzing and computing interior transmission eigenvalues of (piecewise) homogeneous media in two dimensions. It is based on approximating boundary data of respective eigenfunctions by the method of fundamental solutions. However, since a straightforward implementation would solely exploit ill-conditioned matrices and thus evoke spurious results, a stabilization scheme is incorporated. The combined method is then studied with a distinction between isotropic and anisotropic materials, and complemented by novel approximation theory each. Numerical validations complete the investigations for different wave type scenarios.
000885910 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000885910 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000885910 8564_ $$uhttps://juser.fz-juelich.de/record/885910/files/IAS_Series_44.pdf$$yOpenAccess
000885910 8564_ $$uhttps://juser.fz-juelich.de/record/885910/files/IAS_Series_44.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885910 909CO $$ooai:juser.fz-juelich.de:885910$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000885910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885910 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885910 9141_ $$y2020
000885910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168537$$aForschungszentrum Jülich$$b0$$kFZJ
000885910 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000885910 920__ $$lyes
000885910 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000885910 980__ $$aphd
000885910 980__ $$aVDB
000885910 980__ $$aUNRESTRICTED
000885910 980__ $$abook
000885910 980__ $$aI:(DE-Juel1)JSC-20090406
000885910 9801_ $$aFullTexts