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Abstract

This thesis deals with a novel approach for analyzing and computing interior transmission

eigenvalues of (piecewise) homogeneous media in two dimensions. It is based on approxi-

mating boundary data of respective eigenfunctions by the method of fundamental solutions.

However, since a straightforward implementation would solely exploit ill-conditioned matri-

ces and thus evoke spurious results, a stabilization scheme is incorporated. The combined

method is then studied with a distinction between isotropic and anisotropic materials, and

complemented by novel approximation theory each. Numerical validations complete the

investigations for different wave type scenarios.
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Chapter 1

Motivation and scope of this thesis

Interior transmission eigenvalues (ITEs) are complex-valued quantities which originally

arose in the study of inverse scattering problems, see [58, 35]. Here, the general task is to

characterize the interior of some hidden object through its scattering behavior with incident

waves. While a full reconstruction is computationally expensive, non-linear and ill-posed, see

[25], detecting only the support of the scatterer can be considered in an easier linear fashion,

see [59]. However, those sampling methods then suffer from the fact that wave numbers of

magnitude equal to ITEs, whose discrete spectrum is scatterer-specific, need to be excluded

to avoid the possibility of non-trivial waves with evanescent and thus deficient scattering

response, see [28]. Because of this restrictive phenomenon, it is desired to compute ITEs

with high accuracy yet at preferably low numerical costs, see [26].

On the other hand, ITEs do also contain information about governing material parameters

from an isospectral perspective, see [25, 42, 18]. For instance, fixing the support of the

scatterer, it can be shown that for homogeneous media the smallest real-valued ITE is strictly

monotone with respect to some propagation constant, cf. Section 4.2, while for spherically

symmetric inhomogeneous media the entire spectrum even encodes corresponding profiles

completely, see [28]. Those relations can especially be used in non-destructive testing, see

[19, 48]. ITEs apparently exhibit both a deteriorating and descriptive nature in practice which

merit to be investigated further.

Mathematically, ITEs are non-linear eigenvalues of a modeling forward operator, the

interior transmission problem (ITP), which is given for several types of waves altogether by

a coupled, non-self-adjoint and second-order PDE system. In the easiest case of acoustic



2 Motivation and scope of this thesis

scattering it reads

∆v+ k2v = 0 in D

∆w+nk2w = 0 in D

v = w on ∂D

∂νv = ∂νw on ∂D .

where n denotes the refractive index as governing material parameter and D is the global

support of n− 1, defining the underlying sonic scatterer. Corresponding ITEs are then

determined as wave numbers k for which non-trivial eigenfunction pairs (v,w) exist. Although

a profound theoretical analysis has been established for their theory over the years, there are

still many open questions, see [33]. Complementing numerical studies might yield new or

even deeper insights for ITEs at that point. Regarding their direct computation, a non-standard

eigenproblem needs to be solved for whose discretization mostly mesh-based methods like

finite element or boundary element methods are currently used due to their robustness and

broad applicability, see [92, 62, 24, 26, 29, 102, 54, 53, 43]. But also more sophisticated

techniques have been developed in the course of ITE research such as aforementioned

sampling methods, see [24], or the inside-outside duality method, see [83, 61, 85]. However,

neither of them achieves satisfactory accuracy for common test scatterers compared to the

workload required which suggests the investigation of simpler approaches, see [26].

For the listed purposes, the method of fundamental solutions (MFS) will be representa-

tively studied in 2D. It is a mesh-free boundary collocation method which was originally

proposed in [69] to approximate functions subject to fulfilling a certain PDE only by linear

combinations of corresponding singularity-translated fundamental solutions. Hence we must

limit the ITP to homogeneous media (or piecewise homogeneous media with a moderate

number of components) which is actually not that far from ITE calculations for arbitrary

inhomogeneous materials thanks to the aforementioned monotonicity relations. Facilitating

thus non-local trial functions with the potential of exponential convergence rates, the still

cautious use of the MFS nowadays comes from the observation that its straightforward

implementation is generally ill-conditioned, see [8]. However, efficient numerical remedies

have been developed simultaneously one of which has been proposed by [13] in the special

context of eigenproblems with excellent results using the method of particular solutions. In

combination with the related MFS, to be called modified MFS then, it will be our inspira-

tional basis for upcoming ITE calculations and novel approximation theory. Taking also

into account that computing resources, including standards for higher precision arithmetics,
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have been growing tremendously in the last decades and continue so, this finally motivates to

revive formerly-affected methods.

The overall structure of this thesis is as follows: We continue with an overview of

mathematical concepts in Chapter 2 which is necessary for our subsequent theoretical analysis

of ITEs and introduce in Chapter 3 the modified MFS as our representative numerical method

of investigation. Since the ITP is generally distinguished by whether the associated scattering

material is isotropic or not with respect to penetrable waves, we discuss the modified MFS

for both cases separately in Chapter 4 and 5, respectively. Chapter 6 then extends our

computational framework to further ITP models, including a prospect for 3D applications,

and Chapter 7 finally summarizes the main results of this work. Altogether, it is based on

[66–68, 86] where the author of this thesis was also corresponding author and which were

published during his doctoral studies.





Chapter 2

Mathematical preliminaries

The following sections of this chapter are designed to provide a compact recap on mathe-

matical tools relevant for the theoretical scope of this thesis that would otherwise be spread

over several textbooks. Concerning later proofs we may readily refer back to selected results

that we are going to discuss here. Apart from the terminology to be introduced, differential

calculus, complex analysis and the language of PDEs are the least required knowledge that

will be built on.

2.1 Basic notation

For having a common starting ground and setting notations, we spend especially this section

to shortly overview some vector and matrix algebra. Except for in combination with Bessel

or Hankel functions, see [1], we follow the convention to use lower indices for components of

multidimensional objects or functions, whereas superscripts in parenthesis refer to sequence

labels and are thus clearly distinguishable from power exponents. Regarding the variety of

possible product-type operations then, we need to keep two cases apart on the basis of index

summation: Those where two factors might be of different size but have compatible adjacent

dimensions, e.g. matrix-vector multiplication, and on the other hand there are scalar products

which are defined for objects from the same set.

Concerning the first kind, we skip any product symbol and confine to matrix-vector and

matrix-matrix multiplications. Embedding vectors according to C
d ≃ C

d×1, we define

(MV )i, j =
d

∑
p=1

Mi,pVp, j ,
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where M ∈ C
c×d and V ∈ C

d×e. We state two important matrix decompositions that will be

crucial for the numerical core of this thesis: for any full-rank matrix M ∈ C
c×d with c ≥ d

there is a unique QR factorization

M = QR ,

where Q ∈ C
c×d is unitary and R ∈ C

d×d is upper triangular with positive diagonal elements,

see [91]. The QR decomposition can be used to find an orthonormal basis for the range of M.

Besides, the singular value decomposition divides

M =UΣV (2.1)

such that U ∈ C
c×c and V ∈ C

d×d are unitary and Σ ∈ C
c×d is non-negative diagonal, see

[91]. The positive diagonal entries 0 < σmin = σ (1) ≤ ·· · ≤ σ (e) with e ≤ d are called

singular values and encode the matrix’ singularity if σmin ≈ 0, its spectral norm by σ (e), and

finally the relative condition number which can be expressed by σ (e)/σmin and thus serves as

worst-case measure for numerical error propagation from general matrix manipulations.

For elements from the same argument class V,W ∈ C
d×e, representing again vectors or

matrices dependent on whether e is equal to 1 or not, respectively, a commutative bilinear

form can additionally be defined. It runs over all indices tuple-wise and will be signified by

the dot symbol “ · ”, i.e.

V ·W =
d

∑
i=1

e

∑
j=1

Vi, jWi, j = tr(VW⊤) . (2.2)

Here, tr(•) abbreviates the trace operator for quadratic matrices with universal place holder

• also used in different argument contexts later, and ⊤ denotes matrix transposition. In

the further course of complex-valued calculus, taking real and imaginary parts will be

abbreviated by Re(•) and Im(•), respectively, complex conjugation is expressed by overbars,

i denotes the imaginary unit and arg(•) outputs the complex argument. In order to turn

(2.2) into a positive definite scalar product then, one of the arguments (without loss of

generality the second) needs to be conjugated. Hence we set |V | := |V |2 :=
√

V ·V as well

as |V |1 := ∑
d
i=1 ∑

e
j=1 |Vi, j|. While norms for finite dimensional vector spaces, emphasized

with single bars, are equivalent and thus only a matter of convenience, successful structural

insights for problems in infinite dimensions, such as in function spaces, depend strongly

on the selected topology. Especially Section 2.3 aims at giving an interconnected overview
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of related concepts. Before, we recall some well-known basics about eigenvalues as being

literally the focus of this thesis.

2.2 Linear and non-linear eigenvalue problems

Eigenvalues k are characteristic numbers which solve the system

M(k)α = 0 (2.3)

for some eigenvector α ∈ V\{0}, where M(κ) : V → V is a linear operator on a normed

vector space V for each κ ∈ C, see [14]. By convention, κ denotes a variable eigenvalue

parameter while k the exact solution. Obviously, eigenvalues are interesting both from a

technical point of view since they reduce certain operator-actions into scalar manipulations,

but also from a modeling perspective as their spectrum can reflect resonance states. It might

consist of duplicates of identical k with linear independent eigenvectors α whose span is

referred to as the eigenspace and its dimension as geometric multiplicity.

Most commonly, eigenproblems arise linearly in κ , e.g. M(κ) = A−κI, with the identity

map I, which is occasionally dropped symbolically, and some spectral endomorphism

A : V →V . If V is finite dimensional with dimV = m, it is well-known that the overall count

of eigenvalues corresponding to A including geometric multiplicity is at most m. For compact

self-adjoint operators A equality holds according to the Hilbert-Schmidt theorem for m = ∞

and there exists a complete orthonormal basis of eigenvectors, see [5]. With the concept

of algebraic multiplicity then, i.e. the stagnating dimension of the kernel for (A− kI)r as

r → ∞, it can be shown for m < ∞ that V again decomposes into the direct sum of associated

generalized eigenspaces. A corresponding decomposition for the case m = ∞ is generally not

possible and requires more individual structures of the spectral operator involved. However,

many other results from the finite dimensional setting such as the rank–nullity theorem can

still be extended in the functional analytic context of Fredholm operators which abstract

eigenvalue analysis is often built on.

Luckily, linear and non-linear eigenproblems are sometimes not that different from

each other. This comes from the observation that if M is a polynomial in κ , (2.3) can be

transformed into linear block form. For instance, if M(κ) = A0 +κA1 +κ2A2 is quadratic,

we can easily verify that k 6= 0 is a nonlinear eigenvalue of M with eigenvector α ∈V if and
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only if

((
A−1

0 A1 I

−A−1
0 A2 0

)
+

1
k

(
I 0

0 I

))(
α

kA−1
0 A2α

)
= 0 , (2.4)

provided A0 : V →V is invertible. An analogue substitution pattern applies to higher order

polynomials. For general non-linear eigenproblems, linearization is only possible modulo

truncation errors which then needs to be controlled individually.

2.3 Functions, distributions and shared operations

One of the prior concerns when investigating boundary value problems faces the question

in which sense appearing partial derivatives or assigned boundary data for a given bounded

domain D ⊂ R
d should be understood. Their meaning is therefore closely connected to

setting a specific target space to which potential solutions are prescribed to belong. As this

thesis focuses on the computation of certain PDE-based eigenvalues via approximation of

corresponding eigenfunctions, we automatically have to deal with more than one class of

elements. We now list systematically the mathematical foundations necessary for the setup

of the ITP and its analysis from the next chapters. Upcoming definitions are taken from [76]

if not stated otherwise and are compressed or adapted to the content we need.

First we introduce classical Cl(D)-spaces, l ∈N0, which consist of all functions f : D→C

whose derivatives (as pointwise difference quotient limits) ∂ α f up to order l exist and are con-

tinuous. Here, we have used the multi-index power notation abbreviating ∂ α f = ∂ α1
1 . . .∂ αd

d

with αi ∈N0 for 1 ≤ i ≤ d such that |α|1 ≤ l. Besides, we set ∇ f (x) =
(
∂1 f (x), . . . ,∂d f (x)

)

for the total differential at x = (x1, . . . ,xd)
⊤ ∈ D. If all ∂ α f are continuous up to the boundary

(denoted by Cl(D)) and the highest order derivatives fulfill additionally that

sup
x,y∈D,

x 6=y

|∂ α f (x)−∂ α f (y)|
|x− y|γ < ∞

for some 0 < γ ≤ 1, then we denote the corresponding set of Hölder-continuous functions as

Cl,γ(D). In particular, if l = 0 and γ = 1, its elements are more commonly known as Lipschitz

functions. At best, f ∈ Cl(D) for all l which is referred to as being infinitely smooth and

ephasized by C∞(D). Overcoming potential regularity difficulties near the boundary then,

one can either reintroduce C∞(D) in previous analogy or constrain to functions that have
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compact support within D. For the latter we define the space of test functions

D(D) :=
{

f ∈C∞(D) : supp f ⊂ D
}

and note that they can be trivially extended to all of Rd by zero while obviously preserving

global smoothness. One of the main motivations for their consideration stems from the

attempt to assign a calculus of differentiation also to those objects which, as control quantities

in some idealized model problems for example, are not sufficiently regular for the classical

definition, or are not even defined locally in terms of some Lebesgue-measurable function

such as Schwartz distributions. The delta-distribution δx for x ∈ D is one famous instance

and acts like a point evaluation on any test function, i.e.

δx(ϕ) := ϕ(x) .

When endowing D(D) with the topology of uniform convergence on compact subsets of D,

distributions appear as sequentially-continuous functionals in the dual space D(D)∗. Their

differentiation then enters upon its effect on test functions and is defined as ∂ α : D(D)∗ →
D(D)∗ for f ∈ D(D)∗ and ϕ ∈ D(D) by

∂ α f (ϕ) := (−1)|α|1 f (∂ αϕ) .

Identifying by abuse of notation any locally Lebesgue-integrable function f with its nat-

urally induced functional in D(D)∗, i.e. ϕ 7→ ∫
D f (x)ϕ(x)dx (giving indeed a one-to-one

correspondence according to the fundamental theorem of variational calculus), we point out

that distributional derivatives go hand in hand with the classical formula of integration by

parts. Using the duality trick similarly, many other operations for functions can be rigorously

generalized to certain subclasses of distributions, see Chapter 1 of [49]. Those include, for

example, multiplication with smooth functions, convolution defined pointwise by

( f ∗g)(x) :=
∫

Rd
f (x− y)g(y)dy (2.5)

and extendible to pairs f ,g ∈ D(Rd)∗ one of which has compact support (in the sense that

test functions being supported outside that closed range are evaluated to zero), and the Fourier

transform

F f (ξ ) :=
∫

Rd
f (x)eix·ξ dx
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which is likewise feasible for distributions of compact support, but additionally for so-called

tempered distributions S (Rd)∗ as its invariant class, see [76]. In combination, they yield

back the formula F ( f ∗g) = F f Fg conform to the function setting, see Theorem 1.7.6 of

[49].

Coming back to functions from a generalized distributional perspective via the afore-

mentioned embedding, we denote by Lp(D) for 1 ≤ p ≤ ∞ the Banach space of Lebesgue-

measurable functions f such that

‖ f‖p

Lp(D)
:=
∫

D
| f (x)|p dx < ∞

for p < ∞ whereas the borderline case p = ∞ emerges as ‖ f‖L∞(D) := esssupD | f |< ∞. Local

integrability or boundedness with respect to all compact subsets of D can then be expressed

by L
p
loc(D), respectively. To enable a symmetric interplay with other elements, we confine to

the Hilbert space setting p = 2 in the following which is endowed with the scalar product

( f ,g)L2(D) :=
∫

D
f (x)g(x)dx .

According to the Cauchy-Schwarz inequality we can bound

( f ,g)L2(D) ≤ ‖ f‖L2(D)‖g‖L2(D) . (2.6)

If l is some non-negative integer, we introduce similarly Sobolev spaces of corresponding

order by

H l(D) := { f ∈ L2(D) : ∂ α f ∈ L2(D) ∀|α|1 ≤ l}

whose norm ‖•‖H l(D) := (•,•)H l(D) is induced by

( f ,g)H l(D) := ∑
|α|1≤l

(∂ α f ,∂ αg)L2(D) .

Being actually understood as distributional derivatives therein, the regularity assignment

∂ α f ∈ L2(D) within H l(D) then claims the existence of a unique square-integrable function

which is called weak derivative with overloaded notation ∂ α f . Since the Fourier transform

acts unitary on L2(Rd) via Plancherel’s identity

∫

Rd
f (x)g(x)dx =

1
(2π)d

∫

Rd
F f (ξ )Fg(ξ )dξ (2.7)
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and generally turns differentiation into multiplication, i.e. F∂i f (ξ ) = iξiF f (ξ ) for 1 ≤ i ≤
d, there is the equivalent characterization

H l(D) = { f|D : f ∈ S (Rd)∗,
∫

Rd
(1+ |ξ |2)l|F f (ξ )|2 dξ < ∞} .

as long as there exists a continuous extension operator E : H l(D)→ H l(Rd). Apparently,

both definitions of H l(D) share some reformulation in terms of L2-controlled integrands but

the advantage of the latter is that it readily applies to all l ∈R. With that it can be shown that,

additional to H l(D)∗ ≃ H l(D) in terms of (•,•)H l(D) according to the Riesz representation

theorem, there exists an alternative isometric realization of H l(D)∗ which is induced by the

(•,•)L2(D)-based duality product

〈 f ,g〉
H̃−l(D),H l(D) :=

1
(2π)d

∫

Rd
F f (ξ )Fg(−ξ )dξ . (2.8)

The above integral resembles Plancherel’s identity without conjugation using

H̃ l(D) := { f ∈ H l(Rd) : supp f ⊂ D} .

In particular, (2.8) is independent of the extension of g and justifies why taking negative

exponents of Sobolev spaces is associated with passing to their duals, see [17].

The facts listed so far for spaces defined on domains D can be largely adapted to ∂D as

long as it is sufficiently smooth which we want to specify now. Generally, since manifolds

are locally representable as the graph of a scalar function, smoothness of the boundary is

reflected by the regularity of that function. For realizing a surface measure ds on manifolds in

a differential manner, it is reasonable to request that D is at least a bounded Lipschitz domain

due to Rademacher’s theorem which thus also offers the determination of outer normal

vectors ν ∈ S
d−1 := {x ∈ R

d : |x| = 1} almost everywhere along ∂D. Hence, equivalent

definitions of integrability and H l(∂D) for l ≥ 0 arise via a partition-of-unity pullback to the

Euclidean reference frame in R
d−1 with d > 1 and for l < 0 by duality again. In the special

case when the boundary is homeomorph to the (d −1)-dimensional torus, Fourier calculus

and in particular Sobolev spaces can even be treated in a corresponding periodic manner for

which Plancherel’s identity (2.7) then reduces to

‖ f‖2
L2([0,2π)d−1) =

1
(2π)d−1 ∑

ξ∈Zd−1

|F f (ξ )|2 (2.9)
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and likewise

‖ f‖2
H l([0,2π)d−1) =

1
(2π)d−1 ∑

ξ∈Zd−1

|F f (ξ )|2(1+ |ξ |2)l , (2.10)

where the Fourier coefficients are now given by

F f (ξ ) :=
∫

[0,2π)d−1
f (x)eix·ξ dx , (2.11)

see [45]. At last, the overall connection of boundary and interior part of admissible functions

is summarized by the celebrated trace theorem: For a Cl−1,1-domain D there is a unique

continuous and right-invertible trace operator

τ : Hs(D)→ Hs− 1
2 (∂D)

such that τ( f ) = f|∂D for all f ∈C∞(D), provided 1/2 < s ≤ l. Hence we sometimes write

f|∂D or just f instead of τ( f ) also for Sobolev functions f . Choosing 2 ≤ s ≤ l, the results

even extend to τ : Hs(D)→ Hs− 1
2 (∂D)×Hs− 3

2 (∂D), where now τ( f ) = ( f|∂D,(∂ν f )|∂D),

see Appendix 2 of [79]. The trace operator kernels can be characterized by

H l
0(D) := D(D) ,

with the closure taken in the Hs(D)-norm which thus extend the assignment of zero Dirichlet

data to Sobolev functions. If s ≤ 1/2, the operator norm of τ blows up, but restricting

to functions which respond to some differential operator in divergence form more regular

than corresponding weak derivatives would a priori suggest, duality again yields a proper

definition of traces based on variants of Green’s second identity such as

∫

D
f (x)∆g(x)−g(x)∆ f (x)dx =

∫

∂D
f (s)∂νg(s)−g(s)∂ν f (s)ds , (2.12)

which is originally valid for smooth functions and likewise for f ,g ∈ H2(D) by density

arguments from the next paragraph. Exploiting right-invertibility of the trace operator

with s = 2 to ensure existence of some lifting function g ∈ H2(D) such that ‖g‖H2(D) ≤
C
(
‖g‖

H
3
2 (∂D)

+‖∂νg‖
H

1
2 (∂D)

)
given g|∂D and ∂νg|∂D, we then see with (2.6) that
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‖∂ν f‖
H

− 3
2 (∂D)

:= sup
∂ν g|∂D=0,

‖g‖
H

3
2 (∂D)

=1

∫

D
∆ f (x)g(x)− f (x)∆g(x)dx ≤C

(
‖ f‖L2(D)+‖∆ f‖L2(D)

)

(2.13)

and

‖ f‖
H

− 1
2 (∂D)

:= sup
g|∂D=0,

‖∂ν g‖
H

1
2 (∂D)

=1

∫

D
f (x)∆g(x)−∆ f (x)g(x)dx ≤C

(
‖ f‖L2(D)+‖∆ f‖L2(D)

)

(2.14)

are well-defined provided f ,∆ f ∈ L2(D) and D is a C1,1 domain, see [29].

In order to close the gap within our overall function-distribution excursion, we want

to point out that Sobolev spaces with their weak derivatives are in fact not far from being

classically differentiable. The famous Sobolev embeddings show that under affine conditions

on l,d,s,γ ≥ 0 and for bounded Lipschitz domains D ⊂ R
d it holds that Hs(D)⊂Cl,γ(D),

whereas density results such as D(Rd)|D ⊂ H l(D) always persist without restrictions, see

[37]. For our analysis, the transitions between Sobolev spaces themselves with different

exponents will be of major importance because the inclusions Hs(D)⊂ H l(D) are always

compact for l < s and unbounded D. This implies that any weakly convergent sequence{
f (m)

}
m∈N ⊂ Hs(D), signified by

f (m) ⇀ f in Hs(D)

and which embodies
(

f̃ , f (m)
)

Hs(D)
→
(

f̃ , f
)

Hs(D)
for all f̃ ∈ Hs(D) (or with respect to (2.8)

and f̃ ∈ H̃−s(D)), converges then strongly in H l(D), i.e.

f (m) → f in H l(D)

or equivalently
∥∥ f (m)− f

∥∥
H l(D)

→ 0. The case l = s still exhibits weak compactness and

ensures for any bounded sequence
{

f (m)
}

m∈N ⊂ H l(D) a subsequence that we will not

explicitly relabel such that f (m) ⇀ f in H l(D). As for strong convergence, we want to recall

that weak limits are unique, but the associated sequence norm is only weakly lower semi-

continuous when m → ∞. The methodology of weak convergence is thus very convenient
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for passing from bounded approximate solutions of a given linear and non-trivial problem to

some desired limit as long as the latter can be shown to be non-trivial.

At last, we want to mention that all the listed results stated for scalar functions or distri-

butions until here can be adopted to the vector-valued case by interpreting the corresponding

definitions component-wise. The augmented ranges are then, for instance, expressed via

H l(D,Cr), i.e. f ∈ H l(D,Cr) implies fi ∈ H l(D,C) for all 1 ≤ i ≤ r, and to keep consistent

to the old notation, we set H l(Cd) := H l(Cd,C) if r = 1. Depending on whether the output

of product-based operations or definitions have to become a scalar or vector when r > 1, the

ambiguous multiplication so far need to be adjusted according to Section 2.1. With all these

conventions at hand, we are now ready to address more PDE-related aspects towards the ITP.

2.4 Elliptic PDEs and fundamental solutions

In Chapter 1 we have already encountered the acoustic ITP as a representative from a more

general family of modeling systems in focus of this thesis. They have in common that their

distributional forms, i.e. the PDEs for the pairs v and w separately, are linear eigenproblems

with eigenvalue parameter κ given by

∆T +κ2I . (2.15)

Here, I denotes the identity in some definite function space to be specified and ∆T is some

linear, second order differential operator in divergence form, i.e.

∆T u(x) = div
(
T (∇u(x))

)
(2.16)

associated with the tensor-based map T : Cr×d → C
r×d , where u : D → C

r and the outer

divergence div(•) is taken row-wise. As convention, we always skip the trivial specification

of T in the Laplace case ∆u = div(∇u). The operators ∆T are generally assumed to share the

characteristics of strong ellipticity according to our constitutive ITP assumptions later: ∆T

is said to be strongly elliptic on D, see [76], if it holds for some uniform positive constant

c > 0 that

(ηξ⊤) ·
(

T (ηξ⊤)
)
≥ c|ξ |2|η |2 for all x ∈ D, ξ ∈ R

d and η ∈ C
r . (2.17)

In the context of scalar PDEs, the addition “strong” is usually dropped because (2.17) actually

states that T is uniformly positive definite with respect to certain rank-one matrices which

are as such unambiguous for r = 1.
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One benefit of strongly elliptic operators is that once ∆T u exists in some relatively weak

sense, regularity theory for proper spaces like in H l(D,Cr) ensures that u is as good as

the smoothness of PDE coefficients, the boundary itself and the traces of u allow. An

accompanying a priori estimate for second order systems is therefore typically of the form

‖u‖H l+2(D,Cr) ≤C

(
‖∆T u‖H l(D,Cr)+‖Bu‖

H
l+ 3

2 (∂D,Cr)
+‖u‖L2(D,Cr)

)
, (2.18)

see [76], or, since κ2u accounts as a compact perturbation in H l(D) for any u ∈ H l+2(D),

‖u‖H l+2(D,Cr) ≤C

(
‖(∆T +κ2I)u‖H l(D,Cr)+‖Bu‖

H
l+ 3

2 (∂D,Cr)
+‖u‖L2(D,Cr)

)
, (2.19)

where C > 0 is a constant and D is a bounded Cl+1,1-domain. Further, the last summand

on the right-hand side of (2.18) and (2.19) can even be dropped if u is unique as a solution

subject to the boundary data provided, e.g. Bu = τu in the Dirichlet case. Alternatively,

also other boundary control terms with corresponding norms can be used such as the co-

normal derivative Bu(x) = T (∇u(x))ν ∈ H l+ 1
2 (∂D,Cr) from the Neumann problem whose

solutions can at most be determined modulo the addition of constants, making ‖u‖L2(D,Cr)

in the a priori estimates then unavoidable. The complementing question of existence of

solutions to strongly elliptic system subject to fulfilling given boundary data is generally

linked to the applicability of the Fredholm alternative. While for vanishing Dirichlet data

this is sufficiently assured by (2.17), cf. [76], more complex scenarios, including higher

order differential operators, are completed in virtue of elliptic boundary value problems via

complementing conditions, see [3, 2].

In free space or exterior domains, boundary data at infinity generally do not make sense

as before and are replaced, for instance, by certain radiation conditions for r := |x| → ∞ to

obtain well-posedness. In this case, existence of solutions can often be handled explicitly in

terms of fundamental solutions exhibiting the prescribed decay properties and which thus

form the most important distribution class for our ITP analysis: Given ∆T +κ2I, ΦT,κ is a

fundamental solution (system), see [81, 51], if it is a distributional solution to

(∆T +κ2I)ΦT,κ =−δ0 .

Existence of ΦT,κ itself is guaranteed by the Malgrange–Ehrenpreis theorem for constant-

coefficients-PDEs and depending on the symmetry of ∆T it can often be expressed as a radial

basis function in C∞(C\(−∞,0],Cr). For example, in the case d = 2, r = 1 and ∆T = ∆, it

is well-known, see [96, 72], that a valid choice is Φκ = iH(1)
0 (κ| • |)/4, where we have also
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skipped the tensor index and with H
(1)
0 being the first Hankel function of order zero, see

[1]. On the one hand, fundamental solutions cannot be globally smooth functions up to the

underlying PDE order due to their singular right-hand-side inhomogeneity per definition. On

the other hand, it is this subtlety which enables the aforementioned direct construction of

particular solutions u to (∆T +κ2I)u= f via ΦT,κ ∗ f whenever f ∈D(Rd,Cr)∗ is compactly

supported. It should be mentioned that for r > 1 the corresponding fundamental solution

ΦT,κ is matrix-valued, so ΦT,κ ∗ f might not be commutative as it is in the scalar case.

However, similar to (2.18), it holds that if f ∈ H̃ l(D,Cr) for some bounded set D and l ∈ R,

then ΦT,κ ∗ f ∈ H l+2
loc (Rd,Cr), see Theorem 10.3.1 in [50].

While the latter generates inhomogeneous solutions of (∆T +κ2I) with right-hand side

given by f , the outcome is totally different if the convolution involved is performed on some

(d −1)-dimensional closed contour Γ. We will write for f ∈ L2(Γ,Cr)

x 7→ (ΦT,κ ∗|Γ f )(x) :=
∫

Γ
ΦT,κ(x− s) f (s)ds (2.20)

and call (2.20) single layer potential, which now solves (∆T +κ2I)(ΦT,k ∗|Γ f ) = 0 classically

in Γc = R
d\Γ and appears mostly in potential theory with the choice Γ = ∂D to study

corresponding homogeneous boundary value problems on D. However, this also comes

along with certain jump conditions across the shared boundary that are harder to handle

numerically than for the choice Γ = ∂Ω with Ω ⊃ D being some open and bounded superset.

In this way singularities from ΦT,κ are indeed shifted away from D so that ΦT,k ∗|Γ f keeps

smooth across ∂D for all f ∈ L2(Γ,Cr). With the freedom of locating Γ and choosing proper

coefficient functions f then, we will try to approximate eigenfunctions of the ITP and give

thus rise to the MFS described in the next chapter.



Chapter 3

The method of fundamental solutions

The MFS is our special representative of boundary approximation methods that we will

analyze in detail for ITE computations in two dimensions. In this chapter we are going to

introduce the standard version, discuss its natural failures in the context of eigenproblems

and present a successful improvement.

3.1 About PDE discretization techniques

Given the task of approximating solutions to a given boundary value problem which will be an

intermediate step of our eigenvalue detection procedure to be presented, there are many ways

to do so. Usually, they have in common that two families of functions (or distributions) are

involved: on the one hand there is the set of trial functions, which are to generate approximate

eigenfunctions and should therefore be chosen as a dense set in the prescribed target space of

the sought solution. On the other hand there are the test elements, which serve to measure

some residual quantity to be minimized by approximate eigenfunctions.

Among the most famous and approved methods is the finite element Galerkin method for

which both sets coincide. Its span is normally generated by easily-constructible functions

like local polynomials that are supported on few adjacent cells of an auxiliary and preferably

fine mesh covering the domain of interest. This quite general but costly formulation makes

this approach applicable for a wide range of numerical PDE applications, especially for the

treatment of inhomogeneous coefficients. Although the relatively high number of degrees of

freedom involved rarely affects the method’s stability in practice due to sparsity of resulting

discretization matrices, it does influence the convergence rate through the global smoothness

incompatibility of finite elements being mostly either non-trivially analytic or identically

zero within each mesh cell. As a consequence, the achievable accuracy of the method’s
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outcome is primarily limited through the discretization complexity to algebraic error decay,

even for regular PDEs or smooth domain samples, see [80].

While finite element methods, as a subclass of Ritz methods, aim to optimize conditions

which are supported on the interior domain such as PDEs via localized trial functions

and thus exhibit correct boundary data already by construction, Trefftz methods go the

other way round and consider superpositions of particular global PDE-solutions instead

whose boundary misfits need to be controlled then in the ordinary terms of collocation,

least-squares or Galerkin projections, see [95]. The advantages of the latter approach are

two-fold: First, it reduces the residual quantity from the interior to the lower-dimensional

boundary of the domain which usually results in less unknowns for the approximation

procedure. Second, the corresponding trial functions can be infinitely smooth and are

therefore expected to reach optimal convergence rates as for general spectral problems, see

[94]. According to conservation of mysery though, the price one typically has to pay is that

the discretization matrices generated by convenient trial elements become dense and severely

ill-conditioned. In our particular case of radial basis functions there is even an uncertainty

principle, see [89], which states that both the attainable error and the condition number for

the approximation procedure cannot be kept small simultaneously. To cope with critical

round-off error amplifications from ill-conditioning then, one could apply regularization

techniques, see [60], or elaborate the choice of a more efficient trial function basis via some

additional pre-process, see [40]. Since we will be interested in solving eigenproblems which

are associated with explicitly filtering degenerate systems, we will make use of the latter

remedy for the MFS later.

3.2 The standard method of fundamental solutions

The MFS, also called charge simulation method [57], is a Trefftz method which goes back to

Kupradze and Aleksidze at the beginning of the 1960s. It was designed to find approximate

solutions to well-posed boundary value problems, see [69], and is a boundary-type collocation

method with translated fundamental solutions as trial functions varied in their characteristic

delta-distribution-singularity outside the domain of interest. As such it can be interpreted as

a discretization of (2.20) according to the following basic setup:

Assume we want to find a numerical solution u to a constant-coefficient-PDE (or to a system

for r > 1) of the form ∆T u+κ2u = 0 for some non-degenerate and fixed κ ∈C on a bounded,

simply connected domain D ⊂ R
2 such that Bu = f . Here, f is a given (vector) function

on ∂D which is piecewise smooth to admit reasonable point evaluations. According to

collocation, a classical MFS approximation with rm ∈ N degrees of freedom is based on
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a least-squares optimization for matching boundary data which requires m representative

collocation points, labeled relative to their total count according to

{
x(1/m), . . . ,x(m/m)

}
⊂ ∂D ,

and n ≥ m PDE-fulfilling trial functions derived from corresponding fundamental solutions

via

x 7→ ϕ
( j/n)
T,κ (x) := ΦT,κ

(
x− s( j/n)

)
∈ C

r×r . (3.1)

Here,
{

s(1/n), . . . ,s(n/n)
}
⊂ D

c

are n distinct so-called sources or charge points, in association

with the delta peaks from ΦT,κ whose efficient locations are worth some discussion as being

still a partially open problem nowadays, see [6]: The main idea behind their introduction as

specified so far is on the one hand the easy generation of linear independent trial functions

ϕ
( j/n)
T,κ (x) just by varying s( j/n), and on the other hand to avoid artificial singularities within

the domain of interest that would otherwise be inherited from any resulting approximate

solution. Being thus justified as auxiliary instances for the solution procedure than intrinsic

to the boundary value problem itself,
{

s(1/n), . . . ,s(n/n)
}

can either be interpreted as n further

degrees of freedom in the non-linear process of minimizing the boundary collocation defect,

see [38], or, as we will do thanks to many concrete guidelines, cf. [6, 10, 57], they are to be

preselected manually for each m. For the latter one usually fixes some Jordan curve Γ as

admissible distribution range independent of m so that Γ = ∂Ω as well as D ⊂ Ω holds, see

Figure 3.1. It is thus ensured that Γ∩∂D = /0, in particular ϕ
( j/n)
T,κ ∈C∞(D,Cr), and that any

linear combination of our singularity-free trial functions indeed resembles the Riemann-sum-

version of (2.20), see Lemma 6. The latter is the starting point of numerous discretization

techniques for boundary integral equations such as the boundary element method, see [63, 62]

in the ITP context. Although looking similar, a clear advantage and difference of the MFS is

that it is mesh-free and avoids numerical evaluation of singular integrals. Moreover, the fact

that MFS convergence rates even slow down when Γ approaches ∂D, see [10, 93, 74], finally

hints that independent studies are required.

To continue with the MFS based on the above assumptions, at each approximation step m

we specify n = m sources for (3.1)

{
s(1/m), . . . ,s(m/m)

}
⊂ Γ
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where BT (κ),T (∇BT (κ))ν ∈ C
mr×mr are designed in the style of (2.3). In the Laplace case,

we may skip the trivial tensor index again and simply write B(κ) or ∇B(κ)ν , respectively.

Some selected analysis results for MFS applications with f 6= 0 can be found in [17, 10].

The special case of eigenproblems, i.e. f = 0 and degenerate κ , is usually a bit trickier since

the trivial solution α = 0 turns out to spoil the computation procedure which will therefore

be discussed in more detail in the next section.

3.3 The standard method of fundamental solutions applied

to eigenproblems

Having derived the implementation for the standard MFS in the last section, we want to

focus now on how to compute eigenvalues with it. We confine first to the scalar Dirichlet

eigenproblem (r = 1) for the sake of simple presentation since the adaption to the ITP case

will be quite straightforward once we have set an accompanying approximation theory. We

call k > 0 a Dirichlet eigenvalue for the Laplace operator (which has a purely real spectrum

as being self-adjoint) if there exists a non-trivial solution u to

∆u+ k2u = 0 in D (3.6)

u = 0 on ∂D . (3.7)

Our MFS matrix from (3.4) then formally becomes in analogy to (2.3)




H
(1)
0

(
κ
∣∣x(1/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(1/m)− s(m/m)

∣∣)
...

. . .
...

H
(1)
0

(
κ
∣∣x(m/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(m/m)− s(m/m)

∣∣)







α(1/m)

...

α(m/m)


=




0
...

0


 , (3.8)

where the trial functions (3.1) are already expressed by Φκ = iH(1)
0 (κ| • |)/4 modulo pre-

factors and which are holomorphic with respect to κ in the branch C\(−∞,0]. Note

that although the original eigenproblem (3.6) is linear in κ2, the resulting MFS system

turns non-linear. The total 2m computational points are without further specification{
x(1/m), . . . ,x(m/m)

}
⊂ ∂D and

{
s(1/m), . . . ,s(m/m)

}
⊂ Γ for now. We are interested in finding

those κ = κ(m) in (3.8) such that (3.6) is solved approximately for some non-trivial MFS

candidate u(m) according to (3.3). Approximately means here that we cannot expect in

general for all tuples of source and collocation points u(m) to vanish identically along all

x(i/m), but we can at least hope that these boundary misfit samples become altogether close
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3.4 The modified method of fundamental solutions for han-

dling eigenproblems

It seems that the MFS in its standard form is not well-suited for the treatment of eigenprob-

lems and we seek for an extension that remedies the aforementioned pollution problem. In

short, eigenvalue differentiation based on trace information of approximate eigenfunction

candidates has proven to be ill-posed, hence taking additionally their interior behavior into

account might turn out beneficial. With that in mind, the main difference between spurious

and real Dirichlet eigenvalues will emerge, from a trial function perspective, in the norm

ratio of boundary to interior which is either bounded from below or goes down to zero for

eigenfunctions, respectively. More precisely, the asserted bound associated with spurious

eigenvalues comes heuristically from (2.19) and the fact that MFS trial functions ũ perfectly

fulfill the PDE condition from the eigenproblem by definition. Since κ is non-degenerate

when being spurious, (2.19) reduces to

1
Cκ ,D

≤
‖ũ‖

H
l+ 3

2 (∂D)

‖ũ‖H l+2(D)

,

where the left-hand side depends only on κ and D. With a more elaborate derivation for

self-adjoint operators, see [70, 10] for the Laplacian treatment, one can get rid of higher

order fractional Sobolev norms to deal exclusively with more practical L2-norms and the

κ-dependent lower bound can even be specified as

1
CD

min
ℓ∈N

∣∣κ − k(ℓ)
∣∣

∣∣k(ℓ)
∣∣ ≤

‖ũ‖L2(∂D)

‖ũ‖L2(D)

(3.10)

with some pure domain constant CD > 0 now. In particular, note that the right-hand side can

only vanish if κ approaches some k(ℓ). In this way a clear eigenvalue filter is indicated in

terms of computable quantities that combine to avoid the accumulation problem around zero

seen in the last section. Inequality (3.10) will play a model role for our ITE analysis as it

directly relates the boundary misfit of PDE-fulfilling trial functions with the deviation from

any nearby eigenvalue k. It also shows that the main failure of the standard MFS originates

from the undesired approximation of the zero function both on ∂D and in D whenever

spurious eigenvalues are detected. What the MFS community usually does in the context

of eigenproblems, see for instance [7], is to incorporate one inner indicator point x̂ ∈ D on

which the eigenfunction u is assumed not to vanish. By a scaling argument one can then
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Fig. 3.4 Comparison of residuals with respect to optimal α from (3.11), evaluated at different
interior points x̂ within the unit disc D for m = 20 source and collocation points each: On
the left we choose x̂ = (0.8,0)⊤ whereas on the right we take x̂∗ =

(
k(1)/k(3),0

)⊤
. The latter

obviously misses the dip around k(3) since any of its eigenfunctions fulfills u(3)(x̂∗) = 0
according to (3.9) and thus fails to fulfill the normalization constraint within the least-squares
procedure.

demand u(x̂) = 1 so that the overdetermined system to be solved now reads




H
(1)
0

(
κ
∣∣x(1/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(1/m)− s(m/m)

∣∣)
...

. . .
...

H
(1)
0

(
κ
∣∣x(m/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(m/m)− s(m/m)

∣∣)

H
(1)
0

(
κ
∣∣x̂− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x̂− s(m/m)

∣∣)







α(1/m)

...

α(m/m)


=




0
...

0

1




,

(3.11)

which is to be understood in a least-squares sense. Although mostly working well in practice,

problems still arise if x̂ is accidentally chosen as a root of an exact eigenfunction. Figure 3.4

confirms that corresponding eigenvalues would not even be detected any more when solving

(3.11) and therefore lead to incomplete results. Also, we want to recall that it is actually

the full L2(D)-norm instead of only a single point evaluation which controls the eigenvalue

approximation via the denominator in (3.10). Reflecting this consistently will become crucial

in the non-self-adjoint ITP case, see Theorem 1.

From this point of view it becomes desirable to attach more than one representative

inner point to the MFS boundary matrices B to better align the norm discrepancy as well as

lower the chance of hitting inadmissible zero-level-contours. Obtained via scaling before,

the individual yet unknown inner structure of any eigenfunction now hinders some direct

normalization assignment on the right-hand side of (3.11) for more than one interior point

x̂. Luckily, Betcke and Trefethen proposed in [13] another elegant way to still implement
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this idea which they presented within the framework of the method of particular solutions, a

related boundary collocation technique. It is based on a gimmick of the QR factorization and

therefore also applicable to the MFS case which we will describe in the following:

First, we select m̂ ∈ N interior points
{

x̂(1/m̂), . . . , x̂(m̂/m̂)
}

which are to exhaust the

domain D with two possible strategies. Namely, their locations and total number can be

chosen either dynamically proportional to m as explicit degrees of freedom within the MFS

routine, or sufficiently large and fixed in the sense of unchanged quadrature points to better

resemble the L2(D)-norm of superposed trial functions within (3.10) at each step m. Hence,

we wish to choose
{

x̂(1/m̂), . . . , x̂(m̂/m̂)
}

sufficiently dense to hit non-zero niveau lines for

every κ ∈ C. Then, the MFS matrix (3.8) shall again be extended by the information of trial

functions at those interior points which defines

Î(κ) =




H
(1)
0

(
κ
∣∣x̂(1/m̂)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x̂(1/m̂)− s(m/m)

∣∣)
...

. . .
...

H
(1)
0

(
κ
∣∣x̂(m̂/m̂)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x̂(m̂/m̂)− s(m/m)

∣∣)


 ∈ C

m̂×m .

Concatenating both, we arrive at the so-called modified MFS matrix

M(κ) =

(
B(κ)

Î(κ)

)
=




H
(1)
0

(
κ
∣∣x(1/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(1/m)− s(m/m)

∣∣)
...

. . .
...

H
(1)
0

(
κ
∣∣x(m/m)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x(m/m)− s(m/m)

∣∣)

H
(1)
0

(
κ
∣∣x̂(1/m̂)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x̂(1/m̂)− s(m/m)

∣∣)
...

. . .
...

H
(1)
0

(
κ
∣∣x̂(m̂/m̂)− s(1/m)

∣∣) . . . H
(1)
0

(
κ
∣∣x̂(m̂/m̂)− s(m/m)

∣∣)




,

(3.12)

which we are still left to turn into a filter against spurious eigenvalues similar to (3.11).

However, if m̂ > 1, the lifting ‘1’-assignment from the last row would have to be formally

replaced by an entire unit vector with unknown orientation. Therefore, instead of imposing a

concrete normalization condition on the right-hand side, the idea is now to already normalize

M(κ) properly. This can be easily realized by a QR decomposition of the modified MFS

matrix whose unitary factor can then again be divided into a boundary and interior part

according to

M(κ) = Q(κ)R(κ) =

(
QB(κ)

QI(κ)

)
R(κ) ,
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Fig. 3.7 Effect of single precision (left) and double precision (right) arithmetics on the
modified MFS illustrated exemplarily for the unit disc D with m = 25 collocation and source
points each.

Here, |D| and |∂D| denote the measure within the Riemann-sum-versions of corresponding

L2-norms, respectively. Basically, these informal identifications justify the modified MFS

when disregarding discretization errors for m and m̂ large. Figure 3.6 shows an extract of

the convergence history for our canonical example D = B1(0) and k(1) which proves great

success of the proposed method.

Unlike the choice and discretization of Γ, varying m̂ and corresponding point locations

do not show any significant impact on the final modified MFS outcome, so we can readily fix

some random distribution for m̂ = 10, for instance. Concerning the computation of κ(m) at

last, we note that Beyn’s algorithm does not apply any more because the unitary part Q(κ)

of any matrix-valued function can only be holomorphic component-wise if it is constant.

This can be seen by applying Cauchy’s integral formula column-wise in combination with

the triangle inequality for integrals. Nevertheless, κ(m) can still be computed efficiently by

standard yet derivative-free minimization techniques from non-linear optimization such as

the Nelder-Mead simplex method, see [98]. Altogether, due to its convincing results and

close consistency with (3.10), we investigate the modified MFS as the method of choice for

the approximation of ITEs in the remaining scope of this thesis .

A last word should be noted about conditioning, however. Although having introduced

some kind of regularization for the MFS in the context of eigenproblems through the QR-

extension compared to (3.8), this does not imply that its implementation in finite arithmetics

will yield unconditionally good ITE results. The problem is that the robustness of the

remedying orthogonalization depends on the condition number of the underlying modified

MFS matrix, see [55]. The latter was seen to grow with the collocation number until it

becomes severely ill-conditioned, in particular no stable algorithm around could compensate
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a corresponding loss of accuracy upon a critical threshold for m. At least the determination

of singular values as second numerical ingredient within the modified MFS is perfectly

conditioned, cf. [90]. Altogether, our ITP algorithm will be expected beneficial especially

for quite regular scatterers whose boundary can be approximately represented by a moderate

number of collocation points already. Otherwise, higher precision arithmetics will be needed

whose error propagation effects for single and double precision standards are exemplarily

displayed in Figure 3.7, respectively. A detailed analysis for exact ITE convergence rates

will be provided in Section 4.3.3 to have a measure at hand which decay to achieve at best in

practice.



Chapter 4

Computing interior transmission

eigenvalues of isotropic and

homogeneous media

The two-dimensional acoustic ITP for isotropic and homogeneous media serves as our model

problem for ITE analysis and will therefore be discussed most elaborately. In this chapter

we recall different aspects of this particular eigenproblem and develop novel theory for ITE

approximations in the spirit of the modified MFS from Section 3.4 for which we then provide

numerical results as well as an accompanying convergence analysis. Since most of these

findings have already been addressed in [67], whose proof techniques were improved in [68],

we will occasionally recycle passages from both without explicit citation details.

4.1 Mathematical framework

The ITP arises as a special case of the more general transmission problem. Modeling for

instance acoustics in ideal fluids, i.e. isotropic media with vanishing shear modulus µ → 0 in

(6.1), sound propagation obeys a reduced elastic wave equation of Helmholtz type for the

hydrostatic pressure p=−tr(σ)/2, see [39]: Assume we are given the spatial part ṽ :R2 →C

of some time-harmonic wave p(x, t) = e−iωt ṽ(x) which travels at frequency ω > 0 along a

fixed plane in 3D. We think of the latter as R2 for simplicity. When at some point within

there is a transition of different media, let us say between a uniform background material and

some inhomogeneity whose support is mathematically represented by a simply connected,

bounded domain D ⊂ R
2 (to be understood as cross-sections of some planar-symmetric

object in 3D accordingly), scattering effects occur as superposition of local reflections and
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refracted transmission. The resulting total wave w̃ : R2 → C is then characterized by the

aforementioned PDE, see [25],

∆w̃+κ2ñw̃ = 0 in R
2 . (4.1)

Here, ñ : R2 → R>0 denotes the global dispersion-free index of refraction which could also

be complex-valued when including absorption effects, but measures for our purposes just the

ratio of wave speeds with respect to propagation in the background medium. Hence ñ|Dc = 1

and the scatterer D itself, that we assume to be (piecewise) homogeneous throughout this

thesis, is distinguished from its exterior by n := ñ|D = const 6= 1. We further encounter the

wave number κ of upcoming main interest and w̃= ṽ− ũ that is interpreted as the perturbation

of ṽ, solving the Helmholtz equation entirely with respect to κ in absence of the interfering

scatterer, by some scattered wave ũ to be determined. Finally, in order to model the intuition

of ũ being outgoing as excited by D, the 2D Sommerfeld radiation condition

lim
r→∞

√
r (∂rũ− iκ ũ) = 0 , (4.2)

is imposed which is understood uniformly in the angular direction of the argument. It is then

well known that the direct scattering problem of finding w̃ ∈ H1
loc(R

2) for (4.1) such that ũ is

radiating in the sense of (4.2) given ṽ is uniquely solvable, see [28].

We are particularly interested in the possibility when w̃|Dc = ṽ|Dc .This implicates ũ ∈
H2

0 (D) by a bootstrap argument and embodies the phenomenon that D becomes invisible for

the pair (ṽ, w̃), i.e. there is no exterior-wave difference between the scatterer being present or

not. A necessary condition for this to happen would be the solvability of the ITP: Determine

k ∈ C\{0} and v,w ∈ L2(D) such that u := v−w ∈ H2
0 (D) is non-trivial and which solve

∆v+ k2v = 0 in D

∆w+nk2w = 0 in D

v = w on ∂D

∂νv = ∂νw on ∂D

(4.3)

in a distributional sense. Note we may recover

v =
∆u+nk2u

(1−n)k2 and w =
∆u+ k2u

(1−n)k2 (4.4)
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which are well-defined and conclude that u is the actual unknown to be determined via the

polynomial-type eigenproblem

(∆+nk2)(∆+ k2)u = 0 . (4.5)

The intuitive attempt of interpreting (4.3) as a coupled second order system in the usual

H1(D)-manner would result in a non-compact perturbation of a coercive operator and thus

inhibit the application of Fredholm theory, see [25]. In particular, the ITP is non-elliptic

and ITEs k are naturally relaxed to fulfill the PDE requirements for some eigenfunction pair

(v,w) in a distributional sense. Note that their existence, however, does generally not imply

w to be extendible to all of R2 as exterior Helmholtz solution w̃ which then spoils our former

interpretation of being a non-scattering incident field for (4.1). Indeed, in [16] the authors

even showed that regions D with rectangular corners always scatter despite the existence of

infinitely many ITEs.

Apart from their elaborate interpretation, the study of ITEs itself is also highly non-

standard as already indicated by the subtle choice of eigenfunction spaces. It is further

strengthened by the fact that the spectral operator to (4.5) after substitution in linear form

according to (2.4) is non-self-adjoint and thus allows for complex-valued eigenvalues, too.

When to be distinguished, real-valued ITEs will be denoted by kR. We devote the next section

to provide an overview over mathematical properties of ITEs.

4.2 State-of-the-art facts about interior transmission eigen-

values

There are many things that are already known about ITEs for general isotropic media as will

be listed below, but also a lot of questions that are still open. It is the huge mathematical

variety of the refractive index n, especially for generally inhomogeneous media, that restricts

certain results. While regularity assumptions on n can often be weakened up to L∞(D) via the

Fredholm approach, its differentiation within D from unity being the distinguished exterior

index makes more trouble as already indicated by (4.4). A feasible constraint is often found

by imposing Re(n)−1 to be uniformly bounded away from zero with no sign change. One

of the first successful relaxation attempts was then the inclusion of material voids in the

scatterer, i.e. open subsets of D on which n is identically one, but showed that already a

different functional framework is necessary, see [23]. Some recent developments concerning

n ≥ const > 0 being infinitely smooth can be found in [87] using semi-classical analysis. The

case of n−1 changing sign more unconditionally is rather unexplored as well as the analysis
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of absorbing media, see [33], whose refractive index admits a complex-valued dispersion

relation of the form n(x) = n1(x)+ in2(x)/k with its non-trivial imaginary parts damping

former time-harmonic waves. Yet it is known for the latter that if n1 > 0 and either n2 > 0 or

n2 < 0 in some open subregion of D, real-valued ITEs do not exist, cf. Theorem 3.3 of [25].

The history of studying ITEs started in the 1980s and focused primarily on proving

existence and discreteness to estimate the practical consequences of their critical nature

within sampling methods from inverse scattering, see [36] for an early survey. Showing

that the spectrum is at most countable without finite accumulation points could be shown

relatively straightforward via Fredholm theory, see [31]. Further, the algebraic multiplicity is

finite each and corresponding generalized eigenspaces form a complete set in L2(D) as found

out recently, cf. [15]. Unlike showing discreteness, it took about two decades to prove for

the first time that infinitely many real-valued eigenvalues in the case infD n > 1 or supD n < 1

do exist, cf. [27, 82]. A corresponding result covering the complex-valued spectrum is still

open except for in combination with selected scatterers such as the unit disc which then

enables the construction of explicit solutions, see [34]. However, all ITEs k are known to

fulfill Re(k) > Im(k) for n > 0, see [21], and are limited to lie in an arbitrary small strip

modulo finitely many exceptions about the real axis, see [97].

Over the time, also the focus as direct sources of information for D has attracted the

analysis of ITEs. Similar to the famous paper “Can one hear the shape of a drum?”, see

[56], but confining to variable indices of refraction with fixed support D in the ITP context, a

corresponding positive answer could be obtained so far for the inverse spectral problem of

spherically stratified media, see [25]. As the whole complex spectrum must be taken into

account then, this again shows that imaginary structures of ITEs are important to understand.

The same might also hold true for shape optimizations with respect to eigenvalues that

are minimal subject to scatterers of fixed area and constant n. Here, numerical studies of

Kleefeld, see [64], show that k(1), defined as the complex-valued ITE of smallest magnitude,

attains a relative minimum for the unit disc among other sampled scatterers with the same

area. The smallest real-valued ITE k
(1)
R

= k
(1)
R

(n,D) is even more characteristic because it

determines n = const uniquely for fixed D as long as n > 1 or n < 1 is known in advance, see

[28]. Besides, k
(1)
R

obeys a monotonicity principle for ITEs of inhomogeneous media in terms

of homogeneous ones: Given three scatterers D∗ ⊂ D ⊂ D∗, it holds for 1 < n∗ := infD n

with n∗ := supD n that

k
(1)
R

(n∗,D∗)≤ k
(1)
R

(n,D)≤ k
(1)
R

(n∗,D∗) , (4.6)
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whereas for n∗ < 1 the corresponding inequality reads

k
(1)
R

(n∗,D
∗)≤ k

(1)
R

(n,D)≤ k
(1)
R

(n∗,D∗) . (4.7)

Therefore, knowing the spectrum of the ITP with constant index of refraction can help

locating eigenvalues in the variable coefficient case.

4.3 Boundary approximation theory for interior transmis-

sion eigenvalues

In this section we present a novel approximation framework for the computation of ITEs

in the isotropic and homogeneous case. It formalizes the concept of the modified MFS

from Section 3.4 for the ITP in Sobolev spaces as precursor for numerical implementations

afterwards.

4.3.1 A general trial function ansatz

As we have already seen in Chapter 3, there is a direct connection between eigenvalue

and eigenfunction approximations in the case of self-adjoint eigenproblems. Our aim

is a corresponding result for ITEs which, however, requires a different derivation since

decomposition properties like the existence of an orthonormal eigenfunction basis are not

provided for non-self-adjoint operators any more, see [41]. Therefore, we first consider

quite general Trefftz-like trial functions for approximating v and w in (4.3), respectively, and

exploit concrete properties of fundamental solutions in the next subsection. Since 0 < n 6= 1

is constant, the ITP is turned into a coupled system of Helmholtz equations which can in

particular be treated with an MFS ansatz. In order to allow for convenient conversions

from interior to boundary data of trial functions via trace theorems, cf. (2.13) and (2.14),

we assume D to be of class C1,1 if not stated otherwise but focus on the effects of domain

regularity towards eigenvalue approximations in the numerical part later.

We start our analysis with setting a relaxed trial function space of Trefftz kind for

approximate solutions of (4.3) by

U :=
⋃

0≤arg(κ)< π
4

U(κ) ,
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where for variable κ ∈ C\{0} and fixed index of refraction n > 0

U(κ) :=
{
(ṽ, w̃) ∈C∞(D)×C∞(D) : ∆ṽ+κ2ṽ = 0 , ∆w̃+nκ2w̃ = 0

}
.

The reduced regime for κ emerges from the aforementioned fact that all ITEs k fulfill

Re(k)> Im(k) in combination with the simple observation that k,−k,k, −k, are ITEs at once

one of which lies in the first quadrant of the complex plane. Consistent with the MFS, any

candidate pair (ṽ, w̃) in U(κ) is sufficiently smooth to enable collocation procedures, fulfills

the required PDE conditions in the interior and it is the remaining choice of the wave number

which determines in how far boundary data match the ITP. As for the Dirichlet eigenproblem

(3.6), boundary errors of trial functions should only be considered small if the scale-invariant

ratio of corresponding trace and interior norm is so. Both existence and location bounds

for some exact Laplace eigenvalue could then be deduced via inequality (3.10) and thus

established the strategy for the modified MFS in the self-adjoint case. For the ITP we need

to divide a corresponding result into two consecutive steps and show first how ITEs can be

detected within an indefinite process. The main idea is again that the normalized boundary

data are bounded from below by the wave-number-dependent constant 1/Cκ > 0 according

to the a priori estimate

‖ṽ‖L2(D)+‖w̃‖L2(D) ≤Cκ

(
‖ f̃‖

H
3
2 (∂D)

+‖g̃‖
H

1
2 (∂D)

)
,

when solving

∆ṽ+κ2ṽ = 0 in D

∆w̃+nκ2w̃ = 0 in D

ṽ− w̃ = f̃ on ∂D

∂ν(ṽ− w̃) = g̃ on ∂D

for κ 6= k, see [25]. The latter system reflects actual trial function states from U for which

we then investigate κ → k.

Theorem 1. Assume that the sequence
{(

v(m),w(m),κ(m)
)}

m∈N ⊂ U ×C fulfills for some

constant 1 ≤C < ∞ the following conditions:

(i) eigenvalue convergence: κ(m) → k 6= 0 such that 0 ≤ arg(k)< π
4 ,

(ii) uniform interior bound: 1
C
≤
(∥∥v(m)

∥∥2
L2(D)

+
∥∥w(m)

∥∥2
L2(D)

)
≤C for m large enough,
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(iii) vanishing boundary misfit:
(∥∥v(m)−w(m)

∥∥
H

3
2 (∂D)

+
∥∥∂ν

(
v(m)−w(m)

)∥∥
H

1
2 (∂D)

)
→ 0

when m → ∞ .

Then, the limit k from (i) is an ITE and a subsequence of
{(

v(m),w(m)
)}

m∈N converges

weakly in L2(D)×L2(D) to some eigenfunction pair (v,w).

Proof. By rescaling
{(

v(m),w(m)
)}

m∈N, if necessary, we can assume without loss of general-

ity that C = 1 and aim to apply weak compactness in order to construct a solution candidate

that will then indeed meet all the required ITE criteria. By assumption (ii) we know modulo

the extraction of a subsequence that v(m) ⇀ v and w(m) ⇀ w in L2(D) which implies with (i)

that (v,w) ∈ L2(D)×L2(D) fulfills the interior conditions of the ITP according to

∫

D
v(∆ϕ + k2ϕ)dx = lim

m→∞

∫

D
v(m)

(
∆ϕ +

(
κ(m)

)2
ϕ
)

dx

= lim
m→∞

∫

D

(
∆v(m)+

(
κ(m)

)2
v(m)

)
ϕ dx = 0

for any test function ϕ ∈D(D). Analogue calculus applies to w. In order to prove that (v−w)

has the correct ITP boundary data, it suffices to show that the differences
(
v(m)−w(m)

)
are

bounded in H2(D) and thus a subsequence is weakly convergent. This would then imply by

continuity of the trace operator τ : H2(D)→ H
3
2 (∂D) and (iii) that

0 = lim
m→∞

(
v(m)−w(m), f

)
H

3
2 (∂D)

= lim
m→∞

(
τ
(
v(m)−w(m)

)
, f
)

H
3
2 (∂D)

=
(
τ(v−w), f

)
H

3
2 (∂D)

for all f ∈ H
3
2 (∂D), i.e. τ(v−w) = 0, with a similar calculation for the normal derivative.

For deducing the uniform H2(D)-bound with respect to m, we note that
(
v(m)−w(m)

)
solves

the inhomogeneous Helmholtz equation

∆
(
v(m)−w(m)

)
+
(
κ(m)

)2(
v(m)−w(m)

)
= (1−n)w(m) in D ,

so elliptic estimates like (2.18) tell us that

∥∥v(m)−w(m)
∥∥

H2(D)
≤C

(∥∥v(m)−w(m)
∥∥

H
3
2 (∂D)

+
∥∥v(m)

∥∥
L2(D)

+
∥∥w(m)

∥∥
L2(D)

)
.

It remains to show that (v,w) is non-trivial. For this we recall that the embedding

H2(D) →֒ L2(D) is compact which implies
(
v(m) − w(m)

)
→ (v − w) strongly in L2(D).

Apparently, (v,w) 6= 0 if ‖v−w‖L2(D)> 0 so we will assume contrarily that
(
v(m)−w(m)

)
→ 0
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in L2(D). Then, on the one hand, the bounded sequence

am :=
∫

D
w(m)v(m) dx

may be singled out to converge to some a ∈ C from which we know by (ii) with C = 1 that

1
2
≥ |a| ≥ Re(a) = lim

m→∞

∥∥v(m)
∥∥2

L2(D)
+
∥∥w(m)

∥∥2
L2(D)

−
∥∥v(m)−w(m)

∥∥2
L2(D)

2
≥ 1

2
,

i.e. a = 1/2. Since 0 ≤ arg(k)< π/4 and n 6= 1, we may also conclude

∣∣Re
(
a(nk2 − k

2
)
)∣∣> 0 . (4.8)

On the other hand, right-invertibility of the trace operator in combination with assumption

(iii) ensures the existence of boundary-compatible lifting functions θ (m) ∈ H2(D) for all

m∈N such that θ
(m)
|∂D

=
(
v(m)−w(m)

)
|∂D

, ∂νθ
(m)
|∂D

= ∂ν

(
v(m)−w(m)

)
|∂D

and
∥∥θ (m)

∥∥
H2(D)

→ 0.

Green’s second identity (2.12) then yields

∣∣Re
(
a(nk2 − k

2
)
)∣∣= lim

m→∞

∣∣∣∣Re

(∫

D
n
(
κ(m)

)2
w(m)v(m)−w(m)

(
κ(m)

)2
v(m) dx

)∣∣∣∣

= lim
m→∞

∣∣∣∣Re

(∫

D
v(m)∆w(m)−w(m)∆v(m) dx

)∣∣∣∣

= lim
m→∞

∣∣∣∣Re

(∫

∂D
v(m)∂νw(m)−w(m)∂νv(m) ds

)∣∣∣∣

= lim
m→∞

∣∣∣∣Re

(∫

∂D

(
v(m)−w(m)

)
∂νw(m)−w(m)∂ν

(
v(m)−w(m)

)
ds

)∣∣∣∣

= lim
m→∞

∣∣∣∣Re

(∫

D
θ
(m)

∆w(m)−w(m)∆θ
(m)

dx

)∣∣∣∣

≤ lim
m→∞

C
∥∥θ (m)

∥∥
H2(D)

∥∥w(m)
∥∥

L2(D)

= 0 ,

which is a contradiction to (4.8).

Note that the previous convergence result can only hold modulo subsequences in general

since no information about ITE multiplicites are used, implying possibly different eigenfunc-

tion limits. Next, we derive an a posteriori estimate similar to (3.10) which allows to bound

eigenvalue deviations, cf. assumption (i) above, at each approximation step m in terms of

boundary errors, cf. assumption (iii), for any weakly convergent sequence
(
v(m),w(m)

)
in
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L2(D)×L2(D). It will also facilitate to establish convergence rates for concrete minimizing

sequences when m → ∞, cf. Theorem 17.

Lemma 2. Let k be an ITE with eigenfunction pair (v,w) ∈ L2(D)×L2(D) and assume that

(ṽ, w̃) ∈U(κ). If

∣∣∣
∫

D vṽ−nww̃dx

∣∣∣
‖ṽ‖L2(D)+‖w̃‖L2(D)

≥ ε̃ > 0 , (4.9)

then there exists a constant C̃ > 0 which depends only on the boundary data of (v,w) such

that for admissible (ṽ, w̃) it holds that

|k2 −κ2| ≤ C̃

ε̃

√
‖ṽ− w̃‖2

H
3
2 (∂D)

+‖∂ν(ṽ− w̃)‖2

H
1
2 (∂D)

‖ṽ‖L2(D)+‖w̃‖L2(D)

. (4.10)

Proof. Since v−w ∈ H2
0 (D), we may infer with (2.12) that

∫

D
(v−w)∆ṽ− ṽ∆(v−w)dx = 0

and in particular

∫

D
v∆ṽ− ṽ∆vdx =

∫

D
w∆ṽ− ṽ∆wdx .

Simple manipulations show that

(k2 −κ2)
∫

D
ṽv−nw̃wdx

= (k2 −κ2)
∫

D
ṽvdx− (k2 −κ2)

∫

D
nw̃wdx

=
∫

D
v∆ṽ− ṽ∆vdx−

∫

D
w∆w̃− w̃∆wdx

=
∫

D
w∆ṽ− ṽ∆wdx−

∫

D
w∆w̃− w̃∆wdx

=
∫

D
w∆(ṽ− w̃)− (ṽ− w̃)∆wdx

or equivalently, in rearranged form

|k2 −κ2| ≤ 1
ε̃

∣∣∣
∫

D w∆(ṽ− w̃)− (ṽ− w̃)∆wdx

∣∣∣
‖ṽ‖L2(D)+‖w̃‖L2(D)

.
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We can take an auxiliary lifting function θ ∈ H2(D) thanks to right-invertibility of the trace

operator which fulfills θ|∂D = (ṽ− w̃)|∂D and ∂νθ|∂D = 0. Exploiting (2.13) and (2.14) gives

∣∣∣∣
∫

D
w∆(ṽ− w̃)− (ṽ− w̃)∆wdx

∣∣∣∣

≤
∣∣∣∣
∫

D
w∆(ṽ− w̃−θ)− (ṽ− w̃−θ)∆wdx

∣∣∣∣+
∣∣∣∣
∫

D
w∆θ −θ∆wdx

∣∣∣∣

≤‖∂ν(ṽ− w̃−θ)‖
H

1
2 (∂D)

‖w‖
H

− 1
2 (∂D)

+‖θ‖
H

3
2 (∂D)

‖∂νw‖
H

− 3
2 (∂D)

≤‖∂ν(ṽ− w̃)‖
H

1
2 (∂D)

‖w‖
H

− 1
2 (∂D)

+‖ṽ− w̃‖
H

3
2 (∂D)

‖∂νw‖
H

− 3
2 (∂D)

≤C̃

√
‖ṽ− w̃‖2

H
3
2 (∂D)

+‖∂ν(ṽ− w̃)‖2

H
1
2 (∂D)

,

where we have set

C̃ :=
√

‖w‖2

H
− 1

2 (∂D)
+‖∂νw‖2

H
− 3

2 (∂D)
< ∞ .

The previous two results then complement in the following way.

Corollary 3. Let conditions (i)–(iii) of Theorem 1 hold for
{(

v(m),w(m),κ(m)
)}

m∈N ⊂U ×C

which detects some ITE k. Assume that each eigenfunction pair (v,w) from the eigenspace of

k fulfills

∫

D
v2 −nw2 dx 6= 0 (4.11)

(or alternatively ‖v‖2
L2(D)

−n‖w‖2
L2(D)

6= 0 if k = kR). Then there is a constant C > 0 which

depends only on the data of corresponding (v,w) such that

∣∣∣k2 −
(
κ(m)

)2
∣∣∣≤C

√∥∥v(m)−w(m)
∥∥2

H
3
2 (∂D)

+
∥∥∂ν

(
v(m)−w(m)

)∥∥2

H
1
2 (∂D)∥∥v(m)

∥∥
L2(D)

+
∥∥w(m)

∥∥
L2(D)

. (4.12)

Proof. Since ITEs are isolated points, we restrict to the case that either κ(m) = k, or

κ(m) fails to be any other ITE. Assume then contrarily that there is a subsequence of
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{(
v(m),w(m),κ(m)

)}
m∈N, which we do not relabel in the following and which satisfies

∣∣∣k2 −
(
κ(m)

)2
∣∣∣≥C(m)

√∥∥v(m)−w(m)
∥∥2

H
3
2 (∂D)

+
∥∥∂ν

(
v(m)−w(m)

)∥∥2

H
1
2 (∂D)∥∥v(m)

∥∥
L2(D)

+
∥∥w(m)

∥∥
L2(D)

with C(m) ր ∞. According to Theorem 1, a further subsequence of
{(

v(m),w(m)
)}

m∈N
converges weakly to some eigenfunction pair (v,w) in L2(D)×L2(D) that satisfies (4.11). In

particular, due to the lower bound from assumption (ii) therein, we conclude

∣∣∣
∫

D vv(m)−nww(m) dx

∣∣∣
‖v(m)‖L2(D)+‖w(m)‖L2(D)

≥ ε̃ > 0

for m large enough. Hence, Lemma 2 recovers C(m) ≤ C̃/ε̃ to be bounded for those m, which

then contradicts our initial blow-up assumption.

Corollary 3 is still limited for fully justifying (4.12) due to (4.11) which depends on the

unknown exact eigenfunction pairs (v,w). The next theorem therefore shows that at least

for k
(1)
R

and sufficiently large refractive indices n the real-valued-ITE version of the critical

integral term does not vanish.

Theorem 4. Let k = k
(1)
R

(n,D) be the smallest real-valued ITE for the scatterer D with

refractive index n. If n > 1 is large or 0 < n < 1 is small enough, we have the eigenfunction

relations

‖v‖2
L2(D)−n‖w‖2

L2(D) < 0 or ‖v‖2
L2(D)−n‖w‖2

L2(D) > 0 , (4.13)

respectively.

Proof. For the sake of presentation we will assume that n > 1 since the case 0 < n < 1 works

structurally similar. Because v and w can be expressed by

v =
∆u+nk2u

(1−n)k2 and w =
∆u+ k2u

(1−n)k2

according to (4.4), the basic idea for proving (4.13) will be to exploit isometry of the Fourier

transform with respect to the single function u to obtain an algebraic quantity which is

controlled by n. The fact u ∈ H2
0 (D) shows that u,v,w extend naturally by zero outside of D

so Plancherel’s identity (2.7) gives
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∫

D
|v|2 −n|w|2 dx =

1
(2π)2

∫

R2
|F v|2 −n|Fw|2 dξ

=
1

(2π)2

∫

R2

|F (∆u+nk2u)|2 −n|F (∆u+ k2u)|2
(n−1)2k4 dξ

=
1

(2π)2

∫

R2

−|F∆u|2 +nk4|Fu|2
(n−1)k4 dξ

=
1

(2π)2

∫

R2

−|ξ |4 +nk4

(n−1)k4 |Fu|2 dξ .

As will be shown later, we have for k = k
(1)
R

(n,D) that nk4 → 0 and likewise R(n)→ 0 for

n → ∞, where R(n) := k 4
√
(2n−1) is the solution of p(t) := (−t4+nk4)/(n−1)k4 =−1 in

t. With BR(n)(0) being the disc centered at the origin with radius R(n), we split the integral

and exploit monotonicity of p to deduce

∫

BR(n)(0)

−|ξ |4 +nk4

(n−1)k4 |Fu|2 dξ +
∫

BR(n)(0)c

−|ξ |4 +nk4

(n−1)k4 |Fu|2 dξ

≤ p(0)
∫

BR(n)(0)
|Fu|2 dξ + p

(
R(n)

)∫

BR(n)(0)c
|Fu|2 dξ

=
n

n−1
‖Fu‖2

L2
(

BR(n)(0)
)−
(
‖Fu‖2

L2(R2)−‖Fu‖2
L2
(

BR(n)(0)
)
)

≤
(

2n−1
n−1

)
‖Fu‖2

L2
(

BR(n)(0)
)− (2π)2‖u‖2

L2(D) .

The first summand can be made arbitrarily small in terms of growing n according to

‖Fu‖2
L2
(

BR(n)(0)
) ≤

(
max |Fu|

)2
πR(n)2

≤ ‖u‖2
L1(D)πR(n)2

≤ ‖u‖2
L2(D)|D|πR(n)2 ,

where |D| denotes the two-dimensional Lebesgue measure of D. Putting everything together,

we finally obtain

∫

D
|v|2 −n|w|2 dx =

‖u‖2
L2(D)

4π

(
2n−1
n−1

|D|R(n)2 −4π

)
< 0

for n large enough due to the decay of R(n).
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It remains to show that n
(
k
(1)
R

(n,D)
)4 → 0 as n → ∞. Due to (4.7), the magnitude of

k
(1)
R

(n,D) can be bounded from above by k
(1)
R

(n,B) for any included disc B ⊂ D which thus

amounts to show the limit assertion for the unit disc as scatterer. In this case, selected ITEs

k ≥ k
(1)
R

(n,B) solve

det

(
J1 (k) J1 (k

√
n)

kJ′1 (k) k
√

nJ′1 (k
√

n)

)
= 0 , (4.14)

where J1 is the first Bessel function of order one and the prime indicates differentiation.

This relation follows by expanding (v,w) as in (3.9) and applying the ITP boundary data,

respectively. Luckily, (4.14) can be restated more compactly as finding roots k of the

piecewise continuous function

g(κ) := f (κ)− f (
√

nκ) ,

where

f (y) :=
yJ′1(y)
J1(y)

.

Now let j1 < j2 be the two smallest positive roots of J1 and choose n > 1 large enough

to ensure j2 < j1
√

n. Then set k1 := j1/
√

n as well as k2 := j2/
√

n and observe that g is

singular at those points, but continuous in between. Also, those poles have different signs

according to

lim
κցk1

g(κ) =− lim
κցk1

f (
√

nκ) =−∞ and lim
κրk2

g(κ) =− lim
κրk2

f (
√

nκ) = ∞ ,

which follows from the basic facts that J1 < 0 in the interval ( j1, j2), J′1( j1)< 0 but J′1( j2)> 0

and that both f (k1), f (k2) are finite. Therefore, we can make use of the intermediate value

theorem which guarantees for sufficiently large n some root k of g fulfilling k1 ≤ k ≤ k2, or

equivalently the uniform bound j2
1 ≤ nk2 ≤ j2

2 as n → ∞. In particular, nk4 → 0 which finally

proves our lemma.

Concerning complex-valued ITEs with regard to the previous theorem, we want to show

that (4.13) would vanish whenever k has non-trivial imaginary part. Note, however, this does

not exclude (4.11) to be non-zero.

Lemma 5. If (v,w) is an ITP eigenfunction pair with ITE k ∈ C\R, then we have that

‖v‖2
L2(D)

−n‖w‖2
L2(D)

= 0.
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Proof. Let
{(

v(m),w(m)
)}

m∈N ∈ U(k) be a recovery sequence for (v,w) in the sense that(
v(m)−w(m)

)
→ (v−w) in H2(D), cf. Corollary 9 later. In particular, v(m) → v and w(m) →w

in L2(D) according to (4.4). Applying Green’s formula then, we obtain

Im(k2)
∫

D

∣∣v
∣∣2 −n

∣∣w
∣∣2 dx

= lim
m→∞

Im

(
k2
∫

D
v(m)v(m)−nw(m)w(m) dx

)

= lim
m→∞

Im

(∫

D
w(m)∆w(m)− v(m)∆v(m) dx

)

= lim
m→∞

Im

(∫

D

∣∣∇v(m)
∣∣2 −

∣∣∇w(m)
∣∣2 dx+

∫

∂D
w(m)∂νw(m)− v(m)∂νv(m) ds

)

= lim
m→∞

Im

(∫

∂D

(
w(m)− v(m)

)
∂νw(m)+ v(m)∂ν

(
w(m)− v(m)

)
ds

)

= 0

and the assertion of the lemma follows since Im(k2) 6= 0 by assumption.

4.3.2 Approaching the method of fundamental solutions’ framework

So far we have considered the very exhaustive approximation space T which fits all feasible

scenarios of Trefftz methods for corresponding ITE detections. However, when turning

to practical implementations, one is usually only given a limited subset of trial functions

which can mostly be generated via convenient degrees of freedom. The question whether this

reduced class is still sufficiently dense to make the approximation assumptions within Theo-

rem 1 realizable is then open but necessary to answer, especially for numerical applications.

Thanks to the promising results from Chapter 3 we will representatively confine to MFS trial

functions in the following: We recall that Φκ = iH(1)
0 (κ| • |)/4 is the radiating fundamental

solution for the Helmholtz equation for which we need to assign auxiliary source contours

Γ again whose individual effects on ITE approximations will be discussed in the numerical

section later. Up to now Γ is assumed to be of class C2 and to fulfill the constraints Γ = ∂Ω

with D ⊂ Ω as well as the length bound |Γ|< ∞. We then refine UMFS ⊂U given by

UMFS :=
⋃

m∈N,
0≤arg(κ)< π

4

U
(m)
MFS(κ) ,
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where for κ ∈ C\{0} and a sequence of source point sets
{

s(1/m), . . . ,s(m/m)
}
∈ Γ becoming

dense for m → ∞ we set

U
(m)
MFS(κ) :=

{
(
v(m),w(m)

)
: v(m) =

m

∑
j=1

Φκ

(
x− s( j/m)

)
α( j/m),

w(m) =
m

∑
j=1

Φ√
nκ

(
x− s( j/m)

)
β ( j/m), α,β ∈ C

m

}
.

(4.15)

Additionally, we introduce the auxiliary spaces

UMFS(κ) :=
{(

ṽ, w̃
)

: ṽ = Φκ ∗|Γ a, w̃ = Φ√
nκ ∗|Γ b,(a,b) ∈ L2(Γ)×L2(Γ)

}
,

which allow for continuous superpositions as in (2.20) and will thus simplify a density proof

for UMFS with respect to ITP solutions later. Although U
(m)
MFS(κ) 6⊂UMFS(κ) for any m ∈ N,

the next lemma states a direct connection.

Lemma 6. Given any boundary integral solution u = Φκ ∗|Γ a to the Helmholtz equation

with a ∈ L2(Γ) and the above assumptions on Γ. Then there exists a sequence of MFS trial

functions

u(m)(x) =
m

∑
j=1

Φκ

(
x− s( j/m)

)
α( j/m) ,

where α( j/m) ∈ C for all 1 ≤ j ≤ m and
{

s(1/m), . . . ,s(m/m)
}
∈ Γ are independent sets of

source points becoming dense for m → ∞, such that u(m) → u in H l(D) for all l ∈ N. In

particular,

UMFS(κ)⊂
⋃

m∈N
U

(m)
MFS(κ) .

Proof. For a fixed collection of source points
{

s( j/m)
}

1≤ j≤m
⊂ Γ we partition Γ into m

disjoint connected fractions
{

γ( j/m)
}

1≤ j≤m
such that s( j/m) ∈ γ( j/m) for all 1 ≤ j ≤ m. Then

define the approximation kernels Φ
(m)
κ : D×Γ → C by

Φ
(m)
κ (x,s) =

m

∑
j=1

1γ( j/m)(s)Φκ(x− s) ,
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where 1γ( j/m) denotes the indicator function on the set γ( j/m). Similar to (2.20) we can then

define u(m) by convolution

x 7→
∫

Γ
Φ

(m)
κ (x,s)a(s)ds =

m

∑
j=1

α( j/m)Φκ

(
x− s( j/m)

)

with the identifications

α( j/m) :=
∫

γ( j/m)
a(s)ds .

The difference of u and u(m) can therefore be written for any l ∈ N as

sup
x∈D

∣∣∂ l
(
u−u(m)

)∣∣≤ sup
x∈D

m

∑
j=1

∫

γ( j/m)

∣∣∂ l
(
Φκ

(
x− s( j/m)

)
−Φκ(x− s)

)∣∣|a(s)|ds .

Since
∣∣∣∣x−s( j/m)

∣∣−|x−s|
∣∣≤
∣∣s−s( j/m)

∣∣, Φκ ∈C∞(R2\{0}) in combination with Γ∩D = /0

implies the existence of an m-independent Lipschitz constant Ll > 0 such that

|∂ l
(
Φκ

(
x− s( j/m)

)
−Φκ(x− s)

)∣∣≤ Ll

∣∣s− s( j/m)
∣∣ .

By density of the source points in the limit m → ∞ and
∣∣s− s( j/m)

∣∣ ≤
∣∣γ( j/m)

∣∣, where the

latter denotes the measure of the segment γ( j/m), we finally obtain

sup
x∈D

∣∣∂ l
(
u−u(m)

)∣∣≤ ‖a‖L2(Γ)

√
|Γ|Ll sup

1≤ j≤m

∣∣γ( j/m)
∣∣→ 0 .

The result now follows by applying the definition of ‖•‖H l(D).

In order to prove density for UMFS(k) in the space of ITP solutions for every ITE k, we

will work with the equivalent 4th order reformulation (4.5) in the sequel and derive its own

fundamental solution from corresponding Helmholtz kernels. In particular, its form shows

that the MFS ansatz for approximating (v,w) separately as in UMFS and for u = v−w as a

whole is equivalent.

Lemma 7. If Φκ and Φ√
nκ are fundamental solutions to the Helmholtz equation with wave

numbers κ and
√

nκ , respectively, then the kernel Φ(κ,
√

nκ) :=
(
Φ√

nκ −Φκ

)
/((1−n)κ2) is

a fundamental solution for the composed fourth order operator (∆+κ2)(∆+nκ2).
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Proof. Let ϕ ∈ D(D) be an arbitrary test function and set Φ
y

(κ ,
√

nκ)
(x) := Φ(κ,

√
nκ)(y− x)

for some fixed y ∈ R
2 (likewise for Φ

y
κ and Φ

y√
nκ

). Then we can check easily that

∫

D
Φ

y

(κ,
√

nκ)
(∆+κ2)(∆+nκ2)ϕ dx

=
∫

D

Φ
y√

nκ2 −Φ
y
κ

(1−n)κ2 (∆+κ2)(∆+nκ2)ϕ dx

=
1

(1−n)κ2

(∫

D
Φ

y√
nκ
(∆+κ2)(∆+nκ2)ϕ dx−

∫

D
Φ

y
κ(∆+κ2)(∆+nκ2)ϕ dx

)

=
∆ϕ(y)+κ2ϕ(y)

(1−n)κ2 − ∆ϕ(y)+nκ2ϕ(y)

(1−n)κ2

= ϕ(y) ,

which proves the lemma.

We are now ready to prove the announced density result.

Theorem 8. Let u ∈ H2(D) be any distributional solution to the fourth order equation

(∆+κ2)(∆+nκ2)u = 0 with 0 ≤ arg(κ)< π/4. Then there exists a sequence of elements{(
v(m),w(m)

)}
m∈N ⊂ UMFS(κ) such that

(
v(m)−w(m)

)
=: u(m) → u in H2(D). If ∂D is of

class C1,1, then in particular
∥∥u(m)−u

∥∥
H

3
2 (∂D)

→ 0 and
∥∥∂ν

(
u(m)−u

)∥∥
H

1
2 (∂D)

→ 0.

Proof. Parts of the following proof are inspired by Theorem 2.1 and Theorem 2.2 from [17]:

Fix any κ and assume that ũ ∈ H̃−2(D)≃ H2(D)∗ is chosen such that

〈
ũ,Φ(κ,

√
nκ) ∗|Γ a+Φ√

nκ ∗|Γ b
〉

H̃−2(D),H2(D)
= 0 (4.16)

for all (a,b) ∈ L2(Γ)×L2(Γ). By definition of Φ(κ,
√

nκ) from the previous lemma we see

that 〈ũ,v−w〉
H̃−2(D),H2(D) = 0 for any (v,w) ∈UMFS(κ). Therefore, if we can show that the

latter implies

〈ũ,u〉
H̃−2(D),H2(D) = 0 (4.17)

for every distributional solution u ∈ H2(D) of (∆+κ2)(∆+nκ2)u = 0, the Hahn-Banach

theorem would yield the desired density claim since no intermediate functional extension

would be possible.

We define the auxiliary functions which fulfill after corresponding restrictions u∗ :=

Φ(κ ,
√

nκ) ∗|D ũ ∈ L2(D)∩C∞(Dc) and w∗ := Φ√
nκ ∗|D ũ ∈ L2(D)∩C∞(Dc). We then obtain

via distributional Fourier calculus, cf. (2.8), and using radial symmetry of the kernels Φ√
nκ
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and Φ(κ,
√

nκ)

0 =
〈
ũ,Φ(κ,

√
nκ) ∗|Γ a+Φ√

nκ ∗|Γ b
〉

H̃−2(D),H2(D)

=
1

(2π)2

∫

R2
F ũ(ξ )F

(
Φ(κ ,

√
nκ) ∗|Γ a

)
(−ξ )+F ũ(ξ )F

(
Φ√

nκ ∗|Γ b
)
(−ξ )dξ

=
1

(2π)2

∫

R2
F ũ(ξ )F

(
Φ(κ ,

√
nκ)

)
(−ξ )Fa(−ξ )+F ũ(ξ )F

(
Φ√

nκ

)
(−ξ )Fb(−ξ )dξ

=
1

(2π)2

∫

R2
F ũ(ξ )F

(
Φ(κ ,

√
nκ)

)
(ξ )Fa(−ξ )+F ũ(ξ )F

(
Φ√

nκ

)
(ξ )Fb(−ξ )dξ

=
1

(2π)2

∫

R2
Fa(−ξ )F

(
Φ(κ,

√
nκ) ∗|D ũ

)
(ξ )+Fb(−ξ )F

(
Φ√

nκ ∗|D ũ
)
(ξ )dξ

=
1

(2π)2

∫

R2
Fa(ξ )F

(
u∗
)
(−ξ )+Fb(ξ )F

(
w∗)(−ξ )dξ

=
∫

Γ
au∗+bw∗ ds

for all (a,b) ∈ L2(Γ)×L2(Γ) whose embeddings as singular-supported distributions on R
2

were not explicitly relabeled as such. In particular, we may conclude that u∗|Γ = w∗
|Γ = 0.

Using the pointwise estimate

|
√

r(∂rw
∗− i

√
nκw∗)(x)| ≤

√
r‖∂rΦ√

nκ − i
√

nκΦ√
nκ‖H2(x−D)‖ũ‖

H̃−2(D) ,

where x−D := {x− y : y ∈ D}, in combination with standard recursive differentiation

formulas for the pth Hankel function of the first kind as well as the asymptotic expansions

H
(1)
p (z) =

√
2

πz
eiz− pπ

2 − π
4 +O

(
1
z

)

for |z| → ∞, cf. [1], we deduce that also w∗ fulfills the Sommerfeld radiation condition.

By uniqueness of radiating exterior Helmholtz solutions on C2-domains for Im(κ)≥ 0, see

[72, 32], and (∆+nκ2)w∗ = ũ in the sense of distributions, we may conclude that w∗ = 0

outside of Ω (recall Γ = ∂Ω). Due to analyticity, w∗ even vanishes identically in D
c

as

exterior Helmholtz solution. We want to similarly prove in the following that u∗ ∈ H2
0 (D) for

justifying its role as alternative distributional test function later:

Using the definition of Φ(κ ,
√

nκ), direct calculations confirm the distributional relations

(∆+κ2)u∗ = w∗ = (∆+κ2)(Φκ ∗|D w∗) ,

(∆+nκ2)u∗ = Φκ ∗|D ũ = (∆+nκ2)(Φκ ∗|D w∗) .
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This combines to 0 = ((∆+nκ2)− (∆+κ2))(u∗−Φκ ∗|D w∗) = (n−1)(u∗−Φκ ∗|D w∗) and

implies the additional representation u∗ = Φκ ∗|D w∗. The same uniqueness and analyticity

reasoning as for w∗ now yields u∗ = 0 in D
c

again and, by a regularity bootstrap argument

due to w∗ ∈ L2(D), we then conclude u∗ ∈ H2
0 (D). Therefore we can find a sequence of test

functions
{

ϕ∗(m)
}

m∈N ⊂ D(D) such that ϕ∗(m) → u∗ in H2(D). Taking then any distribu-

tional solution u ∈ H2(D) of (∆+κ2)(∆+nκ2)u = 0 as in (4.17) and another approximation

sequence
{

ϕ(p)
}

p∈N ⊂ D(R2) with ϕ(p) → u in H2(D), we may finally compute, using

(∆+nκ2)(∆+κ2)u∗ = ũ in the sense of distributions,

〈ũ,u〉
H̃−2(D),H2(D) = lim

p→∞
〈ũ,ϕ(p)〉H−2(R2),H2(R2)

= lim
p→∞

〈
(∆+nκ2)(∆+κ2)u∗,ϕ(p)

〉
H−2(R2),H2(R2)

=
〈
(∆+nκ2)(∆+κ2)u∗,u

〉
H̃−2(D),H2(D)

= lim
m→∞

∫

D
(∆+κ2)ϕ∗(m)(∆+nκ2)udx

= 0 .

Since u was an arbitrary homogeneous solution and thus ũ, the desired density result for the

interior domain is thereby proven. Appling the trace theorem extends the approximation

result to the boundary of D in corresponding norms.

Putting everything together, for any ITE k and its eigenfunctions we can prove existence

of approximation sequences
{(

v(m),w(m),κ(m)
)}

m∈N ⊂UMFS ×C.

Corollary 9. Let k be any ITE with 0 ≤ arg(k)< π/4. Then there exist MFS trial functions{(
v(m),w(m),κ(m)

)}
m∈N ∈UMFS ×C such that (i)–(iii) from Theorem 1 are satisfied.

Proof. Choosing κ(m) = k for all m ∈ N, the assertion follows by combining Theorem 8 and

Lemma 6 with (4.4) and (4.5).

Note that in general one cannot waive any additional structure of fundamental solutions

generating UMFS like the radiating property yet still keeping the previous density results

for any admissible Γ. For example, working only with the singular imaginary part of Φκ ,

i.e. with Y0(κ| • |), where Y0 is the Bessel function of the second kind of order zero, see

[1], D = B1(0) and Γ = ∂BR(0) such that R > 1 is a root of Y0 show that corresponding trial

function (3.1) and thus linear combinations of such vanish at the origin. Consequently, one

would not be able to approximate Helmholtz functions for κ = 1 which are non-zero at the

origin any more. From this perspective, the radiation condition (4.2) is also a useful auxiliary

feature to ensure unconditional MFS approximations in the end.
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4.3.3 Convergence rate analysis

Subsection 4.3.2 has representatively reduced the trial functions of interest to UMFS ⊂ U

which has proven to be sufficiently dense for ITE approximations. However, it is not clear

whether MFS sequences as in Corollary 9 converge fast and are numerically attractive at

all. In the context of Laplace eigenvalues from Chapter 3, Figure 3.6 indicated for D as unit

disc that geometric convergence can be achieved when calculating the smallest Dirichlet

eigenvalue via the modified MFS. Generally, one expects the decay to depend on the regularity

of solutions to be approximated. Since we can rather control the scattering domain D than its

spectrum of eigenfunctions, the next lemma states a regularity connection between both in

the context of the ITP.

Lemma 10. Let ∂D be of class Cl with l ≥ 2 and (v,w) be a solution to (4.3) for some ITE k.

Then v,w ∈ H l−2(D).

Proof. The result follows by applying regularity theory for elliptic operators of general order,

see for example Theorem 9.8 in [2], to (4.5).

In the sequel we aim at establishing MFS convergence rates for ITE errors controlled by

the collocation number m as well as the smoothness order l of the scatterer D. Our analysis

will be based on (4.12) whose right-hand side will be bounded by proper approximate

eigenfunctions
(
v(m),w(m)

)
∈UMFS and source points distributed on Γ= ∂BR(0) for technical

reasons. Although the actual MFS objective is the difference v(m)−w(m) for which zero target

data are given along the boundary by the ITP, we decouple the problem by approximating

v and w separately in the interior as Helmholtz solutions. This is motivated by satisfying

additionally assumption (ii) from Theorem 1 and the fact that there exists already profound

literature on the MFS for solving Helmholtz-type equations. However, they either do not

deal with Φκ , see [75, 93], for which we refer to our warning after Corollary 9, or they state

L2-boundary estimates with control constants C depending implicitly on the function to be

approximated, see [10], which is too restrictive in our case, cf. Theorem 1 (iii) and (4.20)

below. Still, we will apply their techniques, especially from the Laplace case in [17]. We

start with the following independent result about generalized harmonic polynomials for the

Helmholtz equation with real-valued wave numbers k > 0 from Vekua theory, see [77, 78].

Theorem 11. Let D be a bounded Lipschitz domain, star-shaped with respect to a ball and

assume that the origin is contained in D. Let the exterior angle of D be bounded from below

by λπ with λ ≤ 1 and assume that u ∈ H l(D) with l ≥ 0 solves the homogeneous Helmholtz

equation with wave number κ > 0. Then for each m̃ ∈ N there are Fourier-Bessel functions
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ũ(m̃) of the form

ũ(m̃)(r,ϕ) = a(0/m̃)J0(κr)+
m̃

∑
p̃=1

Jp̃(κr)
(
a(p̃/m̃) cos(p̃ϕ)+b( p̃/m̃) sin(p̃ϕ)

)
(4.18)

such that for all 0 ≤ j ≤ l and a constant C > 0 which is independent of u it holds

∥∥u− ũ(m̃)
∥∥

H j(D)
≤C

(
ln(m̃)

m̃

)λ (l− j)

‖u‖H l(D) . (4.19)

Note that for general C1-domains D, any λ < 1 is feasible while λ = 1 implies convexity.

In either case, we can bound approximation errors between Helmholtz solutions u and MFS

trial functions u(m) = u(m,m̃) from (3.3) by

∥∥u−u(m)
∥∥

H j(D)
≤
∥∥u− ũ(m̃)

∥∥
H j(D)

+
∥∥ũ(m̃)−u(m)

∥∥
H j(D)

. (4.20)

The first summand is then bounded by (4.19) so only convergence for the second term needs

to be analyzed. The advantage of changing the MFS target function dynamically within the

triangle inequality above is that ũ(m̃) is always an entire function unlike u itself and therefore

arguments are not restricted to D any more just like for UMFS which in turn offers a more

global investigation. For this, we still need a couple of auxiliary results to encapsulate some

technical ingredients.

Lemma 12. For p, p̃ ∈ N and 0 ≤ θ ≤ 2π fixed it holds that

∫ 2π

0
cos(p(ϕ −θ))sin(p̃θ)dθ =





π sin(pϕ) , for p = p̃

0 , else

∫ 2π

0
cos(p(ϕ −θ))cos(p̃θ)dθ =





π cos(pϕ) , for p = p̃ 6= 0

2π , for p = p̃ = 0

0 , else .

Proof. If p 6= p̃ 6= 0, we may compute for the first identity via integration by parts with

identical boundary terms due to periodicity of the integrands

∫ 2π

0
cos(p(ϕ −θ))sin(p̃θ)dθ =

p

p̃

∫ 2π

0
sin(p(ϕ −θ))cos(p̃θ)dθ

=

(
p

p̃

)2 ∫ 2π

0
cos(p(ϕ −θ))sin(p̃θ)dθ
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and else

∫ 2π

0
cos(p(ϕ −θ))sin(p̃θ)dθ =

p̃

p

∫ 2π

0
sin(p(ϕ −θ))cos(p̃θ)dθ

=

(
p̃

p

)2 ∫ 2π

0
cos(p(ϕ −θ))sin(p̃θ)dθ ,

which shows in either case that the integral must vanish. Recalling for p= p̃ the trigonometric

addition formula sin(α)− sin(β ) = 2cos((α +β )/2)sin((α −β )/2), we obtain with α =

pϕ and β = p(θ −2ϕ)

∫ 2π

0
cos(p(ϕ −θ))sin(pθ)dθ =

1
2

∫ 2π

0
sin(pθ)− sin(p(θ −2ϕ))dθ = π sin(pϕ) .

Using cos(α)+cos(β ) = 2cos((α +β )/2)cos((α −β )/2) for p = p̃ 6= 0, the second iden-

tity follows similarly.

The next lemma expresses (4.18) in terms of Φκ and thus builds the first bridge to the

MFS framework.

Lemma 13. With the notation from Theorem 11, we have that

ũ(m̃)(r,ϕ) =
a(0/m̃)

2πH
(1)
0 (κR)

∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)dθ

+
m̃

∑
p̃=1

a(p̃/m̃)

2πH
(1)
p̃

(κR)

∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)cos(p̃θ)dθ

+
m̃

∑
p̃=1

b(p̃/m̃)

2πH
(1)
p̃

(κR)

∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)sin(p̃θ)dθ .

(4.21)

Here, D ⊂ BR(0) and its source points are similarly represented in polar coordinates by

(R,θ).

Proof. According to Graf’s addition formula, see Equation 9.1.79 in [1], differences within

arguments of the first Hankel function can be expanded as

H
(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)= H
(1)
0 (κR)J0(κr)+2

∞

∑
p=1

H
(1)
p (κR)Jp(κr)cos(p(ϕ −θ)) .

We see that the first Bessel function of order p̃ appears both in (4.18) and above, so it can be

extracted from the latter by exploiting the orthogonality relations of trigonometric functions
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stated in Lemma 12. We obtain for the p-th cosine term

∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)cos(p̃θ)dθ

=
∫ 2π

0

(
H

(1)
0 (κR)J0(κr)+2

∞

∑
p=1

H
(1)
p (κR)Jp(κr)cos(p(ϕ −θ))

)
cos(p̃θ)dθ

= 2πH
(1)
p̃

(κR)Jp̃(κr)cos(p̃ϕ)

(4.22)

and analogue for the sine-dependent summands

∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)sin(p̃θ)dθ

=
∫ 2π

0

(
H

(1)
0 (κR)J0(κr)+2

∞

∑
p=1

H
(1)
p (κR)Jp(κr)cos(p(ϕ −θ))

)
sin(p̃θ)dθ

= 2πH
(1)
p̃

(κR)Jp̃(κr)sin(p̃ϕ) .

(4.23)

The lemma follows by substituting the above Bessel function identities into (4.18), noting

that H
(1)
p̃

(κR) 6= 0 for all κ,R ∈ R and p̃ ∈ N, see Remark 1 of [10] .

Similar as in Lemma 6, (4.21) reflects a continuous convolution-type superposition which

we need to discretize in order to obtain a valid MFS candidate u(m,m̃). For instance, the

trapezoidal rule would give for m equiangular source points
{

Re2πi j
m

}
, rewritten in the

complex plane for 1 ≤ j ≤ m,

u(m,m̃)(r,ϕ) =
a(0/m̃)

mH
(1)
0 (κR)

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi

j
m

∣∣∣
)

+
m̃

∑
p̃=1

a(p̃/m̃)

mH
(1)
p̃

(κR)

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

cos

(
2π

j

m
p̃

)

+
m̃

∑
p̃=1

b(p̃/m̃)

mH
(1)
p̃

(κR)

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

sin

(
2π

j

m
p̃

)
.

We are interested in bounding the defect of u(m,m̃) and ũ(m̃) for which we freeze the radius

r = const < R in the sequel to switch temporarily to the one-dimensional setting. Hence we
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define

e
(m,p̃/m̃)
a,r (ϕ) :=

1

2πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

cos

(
2π

j

m
p̃

)

−
∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)cos(p̃θ)dθ

)
, 0 ≤ p̃ ≤ m̃ ,

e
(m,p̃/m̃)
b,r (r,ϕ) :=

1

2πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

sin

(
2π

j

m
p̃

)

−
∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)sin(p̃θ)dθ

)
, 1 ≤ p̃ ≤ m̃ ,

which implies

u(m,m̃)(r,•)− ũ(m̃)(r,•) = a(0/m̃)e
(m,0/m̃)
a,r +

m̃

∑
p̃=1

a( p̃/m̃)e
(m, p̃/m̃)
a,r +b( p̃/m̃)e

(m,p̃/m̃)
b,r . (4.24)

Since both e
(m, p̃/m̃)
a,r and e

(m,p̃/m̃)
b,r are linear combinations of 2π-periodic functions each, we

can study their errors in terms of circular harmonics. Fourier expansion with respect to a sine

and cosine basis yields

e
(m, p̃/m̃)
a,r (ϕ) =

Fcose
(m,p̃/m̃)
a,r (0)

2
+

∞

∑
l̃=1

Fcose
(m,p̃/m̃)
a,r (l̃)cos(l̃ϕ)+Fsine

(m,p̃/m̃)
a (l̃)sin(l̃ϕ) ,

e
(m,p̃/m̃)
b,r (ϕ) =

Fcose
(m,p̃/m̃)
b (0)

2
+

∞

∑
l̃=1

Fcose
(m,p̃/m̃)
b,r (l̃)cos(l̃ϕ)+Fsine

(m,p̃/m̃)
b,r (l̃)sin(l̃ϕ) ,

(4.25)

where Fcos,Fsin are adapted from (2.11) and given for e ∈ L2([0,2π)) by

Fcose(l̃) =
1
π

∫ 2π

0
e(ϕ)cos(l̃ϕ)dϕ ,

Fsine(l̃) =
1
π

∫ 2π

0
e(ϕ)sin(l̃ϕ)dϕ ,

with 0 ≤ l̃ < ∞. Hence we obtain for 0 ≤ p̃ ≤ m̃ with (4.22) after changing the order of

integration
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Fcose
(m, p̃/m̃)
a,r (l̃)

=
1
π

∫ 2π

0
e
(m,p̃/m̃)
a,r (ϕ)cos(l̃ϕ)dϕ

=
1

2π2H
(1)
p̃

(κR)

∫ 2π

0

(
2π

m

m

∑
j=1

H
(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

cos

(
2π

j

m
p̃

)

−
∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)cos(p̃θ)dθ

)
cos(l̃ϕ)dϕ

=
1

2π2H
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

(∫ 2π

0
H

(1)
0

(
κ
∣∣∣reiϕ −Re2πi j

m

∣∣∣
)

cos(l̃ϕ)dϕ

)
cos

(
2π

j

m
p̃

)

−
∫ 2π

0

(∫ 2π

0
H

(1)
0

(
κ
∣∣reiϕ −Reiθ

∣∣)cos(l̃ϕ)dϕ

)
cos(p̃θ)dθ

)

=
1

2π2H
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

(
2πH

(1)

l̃
(κR)J

l̃
(κr)cos

(
l̃θ ( j/m)

))
cos

(
2π

j

m
p̃

)

−
∫ 2π

0

(
2πH

(1)

l̃
(κR)J

l̃
(κr)cos(l̃θ)

)
cos(p̃θ)dθ

)

=
H

(1)

l̃
(κR)J

l̃
(κr)

πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

cos

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)
−
∫ 2π

0
cos(l̃θ)cos(p̃θ)dθ

)
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and likewise

Fsine
(m, p̃/m̃)
a,r (l̃) =

H
(1)

l̃
(κR)J

l̃
(κr)

πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)

−
∫ 2π

0
sin(l̃θ)cos(p̃θ)dθ

)
,

Fcose
(m, p̃/m̃)
b,r (l̃) =

H
(1)

l̃
(κR)J

l̃
(κr)

πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

cos

(
2π

j

m
l̃

)
sin

(
2π

j

m
p̃

)

−
∫ 2π

0
cos(l̃θ)sin(p̃θ)dθ

)
,

Fsine
(m, p̃/m̃)
b,r (l̃) =

H
(1)

l̃
(κR)J

l̃
(κr)

πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
sin

(
2π

j

m
p̃

)

−
∫ 2π

0
sin(l̃θ)sin(p̃θ)dθ

)
.

The next lemma helps to evaluate the trigonometric integral defects within the Fourier

coefficients above.

Lemma 14. Fixing m ∈ N, it holds for 0 ≤ l̃ < ∞, 0 ≤ p̃ ≤ m̃ that

2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
sin

(
2π

j

m
p̃

)
−
∫ 2π

0
sin(l̃θ)sin(p̃θ)dθ

=





−π , for p̃ = l̃ 6= 0, (l̃ + p̃) ∈ mZ

π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) 6∈ mZ

−π , for (l̃ − p̃) 6∈ mZ, (l̃ + p̃) ∈ mZ

0 , else ,
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2π

m

m

∑
j=1

cos

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)
−
∫ 2π

0
cos(l̃θ)cos(p̃θ)dθ

=





π , for p̃ = l̃ 6= 0, (l̃ + p̃) ∈ mZ

π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) 6∈ mZ

2π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) ∈ mZ

π , for (l̃ − p̃) 6∈ mZ, (l̃ + p̃) ∈ mZ

0 , else ,

and

2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)
−
∫ 2π

0
sin(l̃θ)cos(p̃θ)dθ = 0 .

Proof. We recall for q 6= 1 the identity ∑
m−1
j=0 q = (1−qm)/(1−q) which implies

m−1

∑
j=0

e2πi j
m r =

m

∑
j=1

e2πi j
m r =

m

∑
j=1

(
e2πi r

m

) j

=





m , for r ∈ mZ

0 , else

and we may infer

m

∑
j=1

sin

(
2π

j

m
r

)
=

m

∑
j=1

e2πi j
m r − e−2πi j

m r

2i
= 0 , ∀r ∈ Z

m

∑
j=1

cos

(
2π

j

m
r

)
=

m

∑
j=1

e2πi j
m r + e−2πi

j
m r

2
=





m , for r ∈ mZ

0 , else .

Since sin(α)− sin(β ) = 2cos((α +β )/2)sin((α −β )/2), we obtain with Lemma 12 for

the mixed integral assertion independent of p̃ and l̃

2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)
−
∫ 2π

0
sin(l̃θ)cos(p̃θ)dθ = 0 .

For the other identities we use cos(α)− cos(β ) = −2sin((α +β )/2)sin((α −β )/2) and

cos(α)+ cos(β ) = 2cos((α +β )/2)cos((α −β )/2), respectively, as well as orthogonality
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again to conclude

2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
sin

(
2π

j

m
p̃

)
−
∫ 2π

0
sin(l̃θ)sin(p̃θ)dθ

=
π

m

m

∑
j=1

(
cos

(
2π

j

m
(l̃ − p̃)

)
− cos

(
2π

j

m
(l̃ + p̃)

))
−
∫ 2π

0
cos(l̃θ)cos(p̃θ)dθ

=





0 , for p̃ = l̃ = 0

−π , for p̃ = l̃ 6= 0, (l̃ + p̃) ∈ mZ

0 , for p̃ = l̃ 6= 0, (l̃ + p̃) 6∈ mZ

π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) 6∈ mZ

0 , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) ∈ mZ

−π , for (l̃ − p̃) 6∈ mZ, (l̃ + p̃) ∈ mZ

0 , else

and

2π

m

m

∑
j=1

cos

(
2π

j

m
l̃

)
cos

(
2π

j

m
p̃

)
−
∫ 2π

0
cos(l̃θ)cos(p̃θ)dθ

=
π

m

m

∑
j=1

(
cos

(
2π

j

m
(l̃ − p̃)

)
+ cos

(
2π

j

m
(l̃ + p̃)

))
−
∫ 2π

0
cos(l̃θ)cos(p̃θ)dθ

=





0 , for p̃ = l̃ = 0

π , for p̃ = l̃ 6= 0, (l̃ + p̃) ∈ mZ

0 , for p̃ = l̃ 6= 0, (l̃ + p̃) 6∈ mZ

π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) 6∈ mZ

2π , for p̃ 6= l̃, (l̃ − p̃) ∈ mZ, (l̃ + p̃) ∈ mZ

π , for (l̃ − p̃) 6∈ mZ, (l̃ + p̃) ∈ mZ

0 , else .

We can deduce the first spectral decay estimate for MFS approximations of Fourier-Bessel

functions on spheres.

Lemma 15. Let 0 < r < R, κ ∈ R and choose r− ≤ r such that κ is no Dirichlet Laplace

eigenvalue of the disc Br−(0). Then for arbitrary approximation orders l ≥ 0 and fixed

Fourier-Bessel degree m̃ ∈ N the MFS error u(m,m̃)− ũ(m̃) from (4.24) with m equiangular
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source points on ∂BR(0) can be bounded in the regime 2m̃ < m by

∥∥u(m,m̃)− ũ(m̃)
∥∥

H l(∂Br(0))
≤Cml

( r

R

)m−2m̃
(

r

r−

)m̃∥∥ũ(m̃)
∥∥

L2(∂Br−(0))
,

where the constant C depends only on l,κ and the radii r−,r,R.

Proof. For a given wave number κ ∈ R and radii r < R, we fix some admissible r− ≤ r and

observe that Jp(κr−) 6= 0 according to (3.9) for every p ∈ N. Therefore, we may compute

for l ≥ 0

∥∥u(m,m̃)− ũ(m̃)
∥∥

H l(∂Br(0))

=
∥∥∥a(0/m̃)e

(m,0/m̃)
a,r +

m̃

∑
p̃=1

a(p̃/m̃)e
(m, p̃/m̃)
a,r +b( p̃/m̃)e

(m, p̃/m̃)
b,r

∥∥∥
H l(∂Br(0))

≤
∥∥∥∥∥a(0/m̃)J0(κr−)

e
(m,0/m̃)
a,r

J0(κr−)

∥∥∥∥∥
H l(∂Br(0))

+

∥∥∥∥∥
m̃

∑
p̃=1

a( p̃/m̃)Jp̃(κr−)
e
(m,p̃/m̃)
a,r

Jp̃(κr−)
+b(p̃/m̃)Jp̃(κr−)

e
(m, p̃/m̃)
b,r

Jp̃(κr−)

∥∥∥∥∥
H l(∂Br(0))

≤
∣∣a(0/m̃)J0(κr−)

∣∣
∥∥∥∥∥

e
(m,0/m̃)
a,r

J0(κr−)

∥∥∥∥∥
H l(∂Br(0))

+
m̃

∑
p̃=1

∣∣a(p̃/m̃)Jp̃(κr−)
∣∣
∥∥∥∥∥

e
(m,p̃/m̃)
a,r

Jp̃(κr−)

∥∥∥∥∥
H l(∂Br(0))

+
∣∣b(p̃/m̃)Jp̃(κr−)

∣∣
∥∥∥∥∥

e
(m,p̃/m̃)
b,r

Jp̃(κr−)

∥∥∥∥∥
H l(∂Br(0))

≤ 1
π

∥∥ũ(m̃)
∥∥

L2(∂Br−(0))
ε
(m,m̃)
r

with

ε
(m,m̃)
r :=

√√√√√
∥∥∥∥∥

e
(m,0/m̃)
a

J0(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

+
m̃

∑
p̃=1

∥∥∥∥∥
e
(m,p̃/m̃)
a

Jp̃(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

+

∥∥∥∥∥
e
(m,p̃/m̃)
b

Jp̃(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

.

(4.26)

In the last step we applied (2.9) according to the Fourier coefficient relations

F ũ(m̃)(0) = a(0/m̃)J0(κr−)
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and

∣∣F ũ(m̃)( p̃)
∣∣2 +

∣∣F ũ(m̃)(−p̃)
∣∣2 =

(∣∣∣∣∣
a( p̃/m̃)− ib( p̃/m̃)

2

∣∣∣∣∣

2

+

∣∣∣∣∣
a(p̃/m̃)+ ib(p̃/m̃)

2

∣∣∣∣∣

2)
J2

p̃(κr−)

=

∣∣a(p̃/m̃)
∣∣2 +

∣∣b(p̃/m̃)
∣∣2

2
J2

p̃(κr−)

(4.27)

for all 1 ≤ p̃ ≤ m̃ and fixed r = r−. The remainder of this proof aims at controlling ε
(m,m̃)
r

in terms of m which we will consider summand-wise. Combining (4.25) with Lemma 14,

exploiting especially 2m̃ < m and Fsine
(m,p̃/m̃)
a,r (l̃) = Fcose

(m, p̃/m̃)
b,r (l̃) = 0 for all frequencies

l̃ ≥ 0, we obtain

e
(m,p̃/m̃)
b,r (ϕ) =

∞

∑
l̃=1

Fsine
(m,p̃/m̃)
b,r (l̃)sin(l̃ϕ)

=
∞

∑
l̃=1

H
(1)

l̃
(κR)J

l̃
(κr)

πH
(1)
p̃

(κR)

(
2π

m

m

∑
j=1

sin

(
2π

j

m
l̃

)
sin

(
2π

j

m
p̃

)
sin(l̃ϕ)

−
∫ 2π

0
sin(l̃θ)sin(p̃θ)dθ

)

=
∞

∑
t=1

H
(1)
tm+p̃

(κR)Jtm+p̃(κr)

H
(1)
p̃

(κR)
sin((tm+ p̃)ϕ)

+
∞

∑
t=1

H
(1)
tm−p̃

(κR)Jtm−p̃(κr)

H
(1)
p̃

(κR)
sin((tm− p̃)ϕ)

for 1 ≤ p̃ ≤ m̃ and likewise

e
(m,p̃/m̃)
a,r (ϕ) =

∞

∑
l̃=1

Fcose
(m,p̃/m̃)
a,r (l̃)cos(l̃ϕ)

=
∞

∑
t=1

H
(1)
tm+p̃

(κR)Jtm+p̃(κr)

H
(1)
p̃

(κR)
cos((tm+ p̃)ϕ)

+
∞

∑
t=1

H
(1)
tm−p̃

(κR)Jtm−p̃(κr)

H
(1)
p̃

(κR)
cos((tm− p̃)ϕ) .
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In order to dominate all the resulting series, we use the following large-order asymptotics for

Bessel functions with fixed argument z 6= 0, cf. Equation 9.3.1 in [1],

Jp(z)∼
1√
2π p

(
ez

2p

)p

, p → ∞ ,

Yp(z)∼
√

2
π p

(
ez

2p

)−p

, p → ∞ .

Since H
(1)
p (z) = Jp(z)+ iYp(z), there is a uniform constant C > 0 such that

H
(1)

l̃
(κR)J

l̃
(κr)

H
(1)
p̃

(κR)
≤C

√
2 p̃

l̃2π

( r

R

)l̃
(

eκR

2 p̃

) p̃

for all p̃, l̃ > 0 but fixed κ,r,R. We then obtain with (4.27) and (2.10)

∥∥e
(m, p̃/m̃)
a,r

∥∥2
H l(∂Br(0))

=
1

2π ∑
l̃∈Z

∣∣F e
(m,p̃/m̃)
a,r (l̃)

∣∣2(1+ |l̃|2)l

=
1

4π

∞

∑
t=1

∣∣∣∣∣∣
H

(1)
tm+p̃

(κR)Jtm+p̃(κr)

H
(1)
p̃

(κR)

∣∣∣∣∣∣

2

(1+ |tm+ p̃|2)l

+
1

4π

∞

∑
t=1

∣∣∣∣∣∣
H

(1)
tm−p̃

(κR)Jtm−p̃(κr)

H
(1)
p̃

(κR)

∣∣∣∣∣∣

2

(1+ |tm− p̃|2)l

≤ C2

4π

∞

∑
t=1

(
2p̃

(tm+ p̃)2π

( r

R

)2tm+2 p̃
(

eκR

2 p̃

)2p̃
)

2l|tm+ p̃|2l

+
C2

4π

∞

∑
t=1

(
2p̃

(tm− p̃)2π

( r

R

)2tm−2p̃
(

eκR

2p̃

)2 p̃
)

2l|tm− p̃|2l

≤Cp̃

(
eκR

2p̃

)2p̃( r

R

)2m−2p̃ ∞

∑
t=0

( r

R

)2tm

(tm)2l−2

≤Cp̃m2l−2
(

eκR

2p̃

)2 p̃( r

R

)2m−2 p̃

where we successively absorbed several numeracy or l-dependent constants into C without

explicit relabeling. Hence we can bound for 0 < p̃ ≤ m̃ < m
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∥∥∥∥∥
e
(m,p̃/m̃)
a

Jp̃(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

≤Cp̃m2l−2
(

eκR

2p̃

)2 p̃( r

R

)2m−2p̃

p̃

(
eκr−

2 p̃

)−2 p̃

≤Cm2l
( r

R

)2m−4p̃
(

r

r−

)2 p̃

.

Similarly, we obtain

∥∥∥∥∥
e
(m, p̃/m̃)
b

Jp̃(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

≤Cm2l
( r

R

)2m−4 p̃
(

r

r−

)2 p̃

.

If p̃ = 0, it suffices to consider

∥∥e
(m,0/m̃)
a,r

∥∥2
H l(∂Br(0))

=
1

2π ∑
l̃∈Z

∣∣F e
(m,0/m̃)
a,r (l̃)

∣∣2(1+ |l̃|2)l

=
1

4π

∞

∑
t=1

∣∣∣∣∣
H

(1)
tm (κR)Jtm(κr)

H
(1)
0 (κR)

∣∣∣∣∣

2

(1+ |tm|2)l

≤ C
∣∣H(1)

0 (κR)
∣∣2

∞

∑
t=1

( r

R

)2tm

(tm)2l−2

≤ C
∣∣H(1)

0 (κR)
∣∣2 m2l−2

( r

R

)2m

and

∥∥∥∥∥
e
(m,0/m̃)
a

J0(κr−)

∥∥∥∥∥

2

H l(∂Br(0))

≤ C
∣∣H(1)

0 (κR)J0(κr−)
∣∣2 m2l

( r

R

)2m

.

Therefore, we can bound (4.26) in total by

(
ε
(m,m̃)
r

)2 ≤Cm2l
m̃

∑
p̃=0

( r

R

)2m−4 p̃
(

r

r−

)2p̃

≤Cm2l

(
r

r−

)2m̃( r

R

)2m−4m̃ m̃

∑
p̃=0

( r

R

)4m̃−4p̃

≤Cm2l

(
r

r−

)2m̃( r

R

)2m−4m̃
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which proves the lemma.

We can finally put all estimates from this section together to specify the error decay

(4.20) for MFS approximations of Helmholtz solutions in terms of the collocation number

and domain regularity. For clarity, we absorb former dependencies on the source radius R

into control constants C in the following.

Theorem 16. Let all the conditions from Theorem 11 be true and choose D ⊂ BR(0). Then

any solution u ∈ H l(D) of the Helmholtz equation with wave number κ > 0 can be approxi-

mated by functions u(m) of the form (3.3) with identical κ and m equiangular source points

distributed on ∂BR(0) such that

∥∥u−u(m)
∥∥

H j(D)
≤C

(
ln(m)

m

)λ (l− j)

‖u‖H l(D) (4.28)

for 1 ≤ j ≤ l. The constant C is independent of u and m.

Proof. We recall observation (4.20) which decomposes the desired decay estimate (4.28)

into

∥∥u−u(m,m̃)
∥∥

H j(D)
≤
∥∥u− ũ(m̃)

∥∥
H j(D)

+
∥∥ũ(m̃)−u(m,m̃)

∥∥
H j(D)

. (4.29)

Here, u(m) := u(m,m̃) and ũ(m̃) are as in Theorem 15 with m̃ to be specified next. For this we

choose r− < r < R such that Br−(0)⊂ D ⊂ Br(0) and κ is no Dirichlet Laplace eigenvalue

of both Br−(0) and Br(0). Fixing some exponent p > 1, we pick for any m > 1 the unique

m̃ ∈ N determined by

( r

R

)m−2m̃
(

r

r−

)m̃

≤ 1
m̃p

,

( r

R

)m−2(m̃+1)
(

r

r−

)m̃+1

≥ 1
(m̃+1)p

,

(4.30)

which exists since the left-hand side is increasing while the right-hand side is decreasing in

m̃. Exploiting monotonicity of the logarithm then, we obtain

m̃

(
2+

ln
(

r
r−

)

ln
(

R
r

)
)
+ ln(m̃)

p

ln
(

R
r

) ≤ m ,

(m̃+1)

(
2+

ln
(

r
r−

)

ln
(

R
r

)
)
+ ln(m̃+1)

p

ln
(

R
r

) ≥ m .
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In particular, we deduce 2m̃ < m < C̃m̃ for some constant C̃ > 0 which depends only on p

and r− < r < R. Thus, the first summand on the right-hand side of (4.29) can be bounded

with Theorem 11 by

∥∥u− ũ(m̃)
∥∥

H j(D)
≤C

(
ln(m̃)

m̃

)λ (l− j)

‖u‖H l(D) ≤C

(
ln(m)

m

)λ (l− j)

‖u‖H l(D) (4.31)

for some adapted constant C > 0. For the other term in (4.29) we employ the previous lemma

with 2m̃ < m < C̃m̃ and (4.30) to obtain

∥∥ũ(m̃)−u(m,m̃)
∥∥

H j(D)
≤
∥∥ũ(m̃)−u(m,m̃)

∥∥
H j(Br(0))

≤C
∥∥ũ(m̃)−u(m,m̃)

∥∥
H

j− 1
2 (∂Br(0))

≤C
m j

m̃p

∥∥ũ(m̃)
∥∥

L2(∂Br−(0))

≤C
1

mp− j

∥∥ũ(m̃)
∥∥

H
1
2 (Br−(0))

≤C
1

mp− j

∥∥ũ(m̃)
∥∥

H j(D)
.

Here, we also used our assumptions on the radii r−,r in combination with (2.19) and the trace

theorem. By (4.31),
∥∥ũ(m̃)

∥∥
H j(D)

≤
∥∥u− ũ(m̃)

∥∥
H j(D)

+‖u‖H j(D) can be uniformly bounded

in terms of ‖u‖H l(D). Since p was chosen arbitrary, the decay within (4.29) is dominated by

the first summand and thus by the right-hand side of (4.31).

We see that our derived MFS convergence rates established in the theorem above are

inherited from those of Fourier-Bessel trial functions. This is not very surprising since the

proof takes the latter as successive target functions which usually admit better convergence

results than domain-restricted approximations, cf. [10, 77]. Altogether, we can use the new

findings to further quantify theoretical ITE errors when approximating boundary data of

eigenfunctions with MFS trial functions for real-valued k and sufficiently smooth domains D,

cf. Corollary 3. It also gives an idea about which convergence rate one might expect when the

conditions of Theorem 1 are met by certain optimal
{(

v
(m)
min,w

(m)
min,κ

(m)
min

)}
m∈N

⊂UMFS ×R.

Theorem 17. Let D be of class Cl with l ≥ 4 fulfilling additionally the domain assump-

tions of Theorem 11 and let k > 0 be an ITE such that all pairs (v,w) of its eigenspace

fulfill ‖v‖2
L2(D)

− n‖w‖2
L2(D)

6= 0. For every m ∈ N distribute a corresponding number

of source points equiangularly on Γ = ∂BR(0) with D ⊂ BR(0). Then a subsequence of
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{(
v
(m)
min,w

(m)
min,κ

(m)
min

)}
m∈N

⊂UMFS ×R, defined for each m as functional minimizers of

κ 7→ f
(m)
MFS(κ) := min

(ṽ,w̃)∈U
(m)
MFS(κ)

√
‖ṽ− w̃‖2

H
3
2 (∂D)

+‖∂ν(ṽ− w̃)‖2

H
1
2 (∂D)

‖ṽ‖L2(D)+‖w̃‖L2(D)

at corresponding local f
(m)
MFS-minima κ = κ

(m)
min such that κ

(m)
min → k, satisfies

∣∣∣k2 −
(

κ
(m)
min

)2∣∣∣≤C

(
ln(m)

m

)λ (l−4)

.

Here, the constant C is independent of m.

Proof. Dominated by Corollary 9, we infer that f
(m)
MFS

(
κ
(m)
min

)
≤ f

(m)
MFS(k) → 0 which im-

plies that
{(

v
(m)
min,w

(m)
min,κ

(m)
min

)}
m∈N

fulfills the assumptions of Theorem 1. In particular,

a subsequence of the functional minimizers converges weakly in L2(D)×L2(D) to some

eigenfunction pair (v,w) ∈ H l−2(D)×H l−2(D) according to Lemma 10. With the help of

the previous theorem then, we can find
(
v(m),w(m)

)
∈U

(m)
MFS(k) such that

∥∥v− v(m)
∥∥

H2(D)
≤C

(
ln(m)

m

)λ (l−4)

‖v‖H l−2(D) ,

∥∥w−w(m)
∥∥

H2(D)
≤C

(
ln(m)

m

)λ (l−4)

‖w‖H l−2(D)

for all m ∈ N. Since (v−w)|∂D = ∂ν(v−w)|∂D = 0, the trace theorem ensures

∥∥v(m)−w(m)
∥∥

H
3
2 (∂D)

≤
∥∥v− v(m)

∥∥
H

3
2 (∂D)

+
∥∥w−w(m)

∥∥
H

3
2 (∂D)

≤C
(∥∥v− v(m)

∥∥
H2(D)

+
∥∥w−w(m)

∥∥
H2(D)

)

and likewise

∥∥∂ν

(
v(m)−w(m)

)∥∥
H

1
2 (∂D)

≤C
(∥∥v− v(m)

∥∥
H2(D)

+
∥∥w−w(m)

∥∥
H2(D)

)
.
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Corollary 3 finally yields

∣∣∣k2 −
(

κ
(m)
min

)2∣∣∣≤C

√∥∥∥v
(m)
min −w

(m)
min

∥∥∥
2

H
3
2 (∂D)

+
∥∥∥∂ν

(
v
(m)
min −w

(m)
min

)∥∥∥
2

H
1
2 (∂D)∥∥∥v

(m)
min

∥∥∥
L2(D)

+
∥∥∥w

(m)
min

∥∥∥
L2(D)

≤C

√∥∥v(m)−w(m)
∥∥2

H
3
2 (∂D)

+
∥∥∂ν

(
v(m)−w(m)

)∥∥2

H
1
2 (∂D)∥∥v(m)

∥∥
L2(D)

+
∥∥w(m)

∥∥
L2(D)

≤C

(
ln(m)

m

)λ (l−4)

,

where all dependencies on (v,w) have been absorbed successively into C > 0.

Note for infinitely smooth domains D we would obtain spectral decay, at least in theory.

Therefore, we will finally focus on numerical aspects of the modified MFS algorithm for

ITE computations and study if the conclusions from this section are reflected by the discrete

setting, too.

4.4 The modified method of fundamental solutions from a

numerical perspective

So far we have established an abstract framework for ITE approximations of homogeneous

and isotropic media in exact arithmetics and Sobolev norms. In practice, however, the effects

of round-off errors and discretized norms are unavoidable and need to be taken into account.

In the following we apply the modified MFS algorithm for ITE calculations and present

numerical results to explore the practical competition between ill-conditioning, as intrinsic

to radial-basis-function-schemes, and theoretical convergence rates stated by Theorem 17.

4.4.1 Implementation details

In Section 3.4 we introduced the modified MFS which was specifically designed there for

the computation of Laplace eigenvalues. Recall that the main ingredient was an a posteriori

estimate like (3.10) which directly relates boundary errors from approximate eigenfunction

candidates of Trefftz-kind to corresponding eigenvalue misfits. In the non-self-adjoint ITP

case, approximation of ITEs and accompanying error bounds in terms of trial function defects

could also be derived yet in a more modular fashion, cf. Theorem 1 and Lemma 2. Hence

our concrete numerical implementation of the modified MFS for the ITP will emerge as a
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combination of both as indicated by Theorem 17. In order to explore the full computational

potential then, we relax some material conditions made in the theoretical section since they

served to simplify technical difficulties so far. In the following we also include Lipschitz

domains D since practical collocation is actually invisible with respect to local regularity

properties of boundaries. Regarding the various computational points required, we adopt

the notation from Chapter 3 and select for each m again
{

s(1/m), . . . ,s(m/m)
}
⊂ Γ as sources

to generate U
(m)
MFS(κ) as well as

{
x(1/m), . . . ,x(m/m)

}
⊂ ∂D for the boundary collocation

procedure. Further, we fix m̂ random indicator points
{

x̂(1/m̂), . . . ,x(m̂/m̂)
}
∈ D which are

to free the MFS as auxiliary parameters from spurious eigenvalues also in the ITP case, cf.

Section 3.3.

Given some ITE k, a reasonable collocation version of Theorem 1 (setting C = 1 by

disregarding discretization errors for the sake of derivation) would seek for approximate

eigenfunction pairs
(
v(m),w(m)

)
∈U

(m)
MFS

(
κ(m)

)
such that

1
m̂

m̂

∑
j=1

∣∣v(m)
(
x̂( j,m̂)

)∣∣2 +
∣∣w(m)

(
x̂( j,m̂)

)∣∣2 ≈ 1 (4.32)

while

m

∑
j=1

∣∣v(m)
(
x( j/m)

)
−w(m)

(
x( j/m)

)∣∣2 +
∣∣∂νv(m)

(
x( j/m)

)
−∂νw(m)

(
x( j/m)

)∣∣2 → 0 (4.33)

for m → ∞. In this way, the control assumptions (ii) and (iii) are directly addressed numeri-

cally, and (i) should be checked by inspecting the successive κ(m)-output. However, note

that a consistent discretization with respect to the actually prescribed, fractional Sobolev

norms in (iii) requires more advanced techniques due to their rather collocation-incompatible

nature (2.10), so the boundary collocation above can alternatively be modified. Returning

to our compromise, trial function dependencies of
(
v(m),w(m)

)
will be captured by the co-

efficient matrices B(κ), ∇B(κ)ν , Î(κ) and B(
√

nκ), ∇B(
√

nκ)ν , Î(
√

nκ) from Chapter 3,

respectively. In analogy to (3.12) now, the modified MFS matrix for the ITP characterized

by (4.32) and (4.33) would read, after absorbing appearing minus signs into trial function

coefficients,

M(κ) =




B(κ) B(
√

nκ)

∇B(κ)ν ∇B(
√

nκ)ν

Î(κ) 0

0 Î(
√

nκ)


 . (4.34)
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Having thus derived M(κ), we can proceed as in Section 3.4, Figure 3.5, to get rid of spurious

ITEs and decompose

M(κ) = Q(κ)R(κ) =

(
QB(κ)

QI(κ)

)
R(κ) , (4.35)

with QI(κ) ∈ C
2m̂×2m and QB(κ) ∈ C

2m×2m now. Recall that the ranges of M(κ) and Q(κ)

are equal but it is only the unitary factor which, similar to (3.13), fulfills (4.33) implicitly

as soon as (4.32) holds. Therefore, it again amounts to make the latter vanish for which we

extract the smallest singular value from QB(κ) at each collocation step m as a function of

κ ∈ C\{0}, i.e.

κ 7→ σmin(κ) = min
η∈C2m,|η |=1

|QB(κ)η | (4.36)

and call sufficiently small local minima κ(m) approximate ITEs. We will also write κ(ℓ,m)

or κ
(ℓ,m)
R

when linking to the ℓ-th ITE k(ℓ,m) or k
(ℓ,m)
R

, respectively. Likewise, the underlying

routine will be referred to as modified MFS.

Note that the modified MFS generally executes without the need of explicitly establishing

underlying approximate eigenfunctions. Still they are recoverable by taking the singular

vector ηmin ∈C
2m associated with σmin(κ

(m)), i.e. the corresponding columns of V
T

in (2.1),

and computing the coefficient vector

(
α

β

)
= R−1(κ(m)

)
ηmin (4.37)

from (4.15). However, since unitary factors are perfectly conditioned, M(κ) and R(κ) should

both suffer from the same MFS ill-conditioning for all κ ∈ C which makes the inversion

prone to errors. Numerical linear algebra still ensures that the residual, i.e. the collocation

misfit of the associated approximate eigenfunction pair from (4.15), is small. A more accurate

eigenfunction reconstruction scheme is proposed in [12].

At last, we want to remark that the minimization (4.36) cannot be performed for the

smallest singular value only, but also for higher ones. Hence, if σmin(κ) vanishes numerically

and coincides at that approximate eigenvalue κ with two or more singular values from QB(κ),

the corresponding intersection number indicates the geometric multiplicity of κ , see Figure

4.2. This comes from the fact that singular vectors are linear independent for each fixed

κ and thus determine the kernel dimension of QB(κ), too. However, note that a rigorous

conclusion for the multiplicity of exact ITEs k in the limit would require deeper investigation.
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Fig. 4.4 Exemplary output of κ 7→ σmin(κ) in the complex plane for an ellipse-shaped
scatterer with major and minor semi-axis of length 1 and 0.5, respectively. The contour plot
is generated for m = 25 and n = 4. Centers of concentric level sets appearing in conjugated
pairs indicate ITEs. Because of too coarse resolution, the first two real-valued ITEs listed in
Figure 4.3 are indistinguishable here.

points each. Despite its smoothness, we observe especially for ε = 0.3 that the modified MFS

runs into computational challenges with the formation of concave fractions. By trial and

error, a radius of R = 2 seems optimal when restricting Γ again to concentric circles around

the deformed ellipses. Still, we are able to refine the results given in [29]. In agreement with

[10], we conclude that the more irregular the scattering boundary becomes, the tighter the

sources should be chosen. However, for fixed D, the convergence rates decrease the more Γ

approaches ∂D.

We lastly consider non-smooth domains with corners such as regular polygons although

being not covered by our developed approximation theory. Here we are only able to extract

around 4 ITE digits each with occasional individual improvements. Our final results are

listed in Figure 4.6 for polygonal edges of unit length each. They are obtained by equidistant

computational points without covering any corners and with Γ as the circumference scaled

with a factor of 1.5 away from the scattering boundary. Effective convergence of κ(m)

starts for m > 40. The clear loss of accuracy also underlines the quintessence of [16] that

eigenfunctions cannot be locally extended around corners of D at all: While we already

choose the sources as truncating singularities for MFS trial functions relatively close to the

polygons, Γ is on the other hand constrained to lie disjoint around ∂D by the discretized

MFS formulation to simultaneously avoid poles along the scattering boundary. In particular,

we conclude that the modified MFS is not well-suited for non-smooth domains.







Chapter 5

Computing interior transmission

eigenvalues of anisotropic and

homogeneous media

In the following we consider the anisotropic version of the ITP from the last chapter which

requires an adapted modified MFS variant due to intrinsically different regularity assumptions

on the eigenfunctions. We revisit many aspects from ITEs of isotropic media, but discover

also fundamentally new phenomena. Our analysis is based on the results of [66] and is as

such partially adopted verbatim without further reference.

5.1 Mathematical framework

From a mathematical point of view, the anisotropic ITP emerges from the PDE setup of

Section 4.1 if the diffusive term ∆w̃= div(∇w̃) in (4.1) is to undergo directional dependencies

on the wave (gradient) due to small-scale orientations in the material. However, since acoustic

waves are only associated with isotropic media, see [4], a physically correct model suits time-

harmonic electromagnetic scattering of infinitely-long cylinders in 3D. Indeed, polarizations

perpendicular to the cylinder axis will reduce the setup to our upcoming scalar Helmholtz-

type case in two dimensions, see [26, 22].

Anisotropy can formally be expressed by intertwining a corresponding symmetric positive

definite matrix Ã ∈ R
2×2 into the otherwise rotation-invariant PDE whose eigenvalues we
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assume to either fulfill

1 < A∗ := min
ξ∈C2

|ξ |=1

(ξ · Ãξ )

or

1 > A∗ := max
ξ∈C2

|ξ |=1

(ξ · Ãξ ) .

These restrictions on Ã 6= I remind of the two admissible cases for the refractive index

0 < n = const 6= 1 from the isotropic case which can now be weakened by also allowing for

n = 1. In order to keep consistent with the PDE notation from Section 2.4, cf. (2.16), we

associate a tensorial map A : C1×2 → C
1×2 with Ã determined by

A(w̃) =
(

Ã1,1∂1w̃+ Ã1,2∂2w̃ Ã1,2∂1w̃+ Ã2,2∂2w̃

)
.

Accordingly, the ITP for anisotropic media reads

∆v+ k2v = 0 in D

∆Aw+nk2w = 0 in D

v = w on ∂D

∂νv = A(∇w)ν on ∂D

(5.1)

and we call wave numbers k ∈C\{0} with non-trivial solutions v,w ∈ H1(D) ITEs. Note the

improved Sobolev regularity assumptions on v,w in comparison with the ITP for isotropic

media from Section 4.1. Since the resulting PDE system for Ã 6= I prevents a transformation

into a fourth order elliptic equation like (4.5) as the highest order operators for v and w differ

now, the eigenproblem analysis requires a different, variational approach. H1(D) turns then

out to provide a feasible Fredholm framework again subject to our initial distinction of A∗
and A∗, see [25, 28, 71]. In particular, we may consider the weak form of (5.1) given by

∫

D
−A(∇w) ·∇ϕ +∇v ·∇ψ + k2nwϕ − k2vψ dx = 0 , (5.2)

where ϕ,ψ ∈ H1(D) are such that (ϕ −ψ) ∈ H1
0 (D). Our numerical realization of the

modified MFS in the anisotropic case and underlying approximation theory to be developed

should somehow make use of these several subtleties in comparison with isotropic media.
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While the next sections aim at resolving some technical differences, we want to point out

that many ITE facts from Section 4.2 still hold with additional restrictions on A, see [25, 28].

5.2 Boundary approximation theory for computing inte-

rior transmission eigenvalues

As for ITEs in the isotropic case, we want to provide theory for MFS-based boundary

approximation methods subject to anisotropic media which can then be used to update the

modified MFS consistently. We follow the approved structural guidelines from the previous

chapter and start again from a very general trial function perspective.

5.2.1 A general trial function ansatz

Let the constant material parameters n,A be as in the previous section and assume that

D has Lipschitz boundary. On the basis of (2.12), the relaxed regularity assumption on

the scattering domain still allows us to define a well-defined negative trace norm for the

(co-)normal derivative of ITP eigenfunctions v,w ∈ H1(D) via the duality product

〈∂νv,ϕ〉
H

− 1
2 (∂D),H

1
2 (∂D)

:=
∫

D
∆vϕ −∇v ·∇ϕ dx =−

∫

D
k2vϕ +∇v ·∇ϕ dx (5.3)

(and similarly for the treatment of A(∇w)ν). Here, ϕ ∈ H
1
2 (∂D) is arbitrary and extendible

to some ϕ ∈ H1(D) thanks to right-invertibility of the trace operator which then induces

‖∂νv‖
H

− 1
2 (∂D)

:= sup
‖ϕ‖

H
1
2 (∂D)

=1
〈∂νv,ϕ〉

H
− 1

2 (∂D),H
1
2 (∂D)

≤C‖v‖H1(D)

as refinement of (2.13). Having thus set in which sense approximations of boundary data are

to be understood, we define the admissible set of Trefftz-like trial functions for anisotropic

media by

UA :=
⋃

0≤arg(κ)≤ π
2

UA(κ) ,

where for κ ∈ C\{0} and fixed n > 0 we set

UA(κ) :=
{
(ṽ, w̃) ∈C∞(D)×C∞(D) : ∆ṽ+κ2ṽ = 0 , ∆Aw̃+nκ2w̃ = 0

}
.
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Note that unlike U , the index set of UA is now larger since we do not have concrete locality

results for ITEs as in the isotropic case any more except for the symmetry relations with

respect to quadrants in the complex plane. The next theorem is then the analogue of

Theorem 1 but requires an independent proof due to necessarily different assumptions on

ITE approximation sequences in UA.

Theorem 18. Assume that the sequence {
(
v(m),w(m),κ(m)

)
}m∈N ⊂UA ×C with the initial

restrictions on A fulfills for some constant 1 ≤C < ∞ the following conditions:

1. eigenvalue convergence: κ(m) → k 6= 0 ,

2. uniform interior bound: 1
C
<
(∥∥v(m)

∥∥2
H1(D)

+
∥∥w(m)

∥∥2
H1(D)

)
<C for m large enough,

3. vanishing boundary misfit:
(∥∥v(m)−w(m)

∥∥
H

1
2 (∂D)

+
∥∥∂νv(m)−A

(
w(m)

)
ν
∥∥

H
− 1

2 (∂D)

)
→ 0 for m → ∞ .

Then, the limit k from (i) is an ITE and a subsequence of
(
v(m),w(m)

)
converges weakly in

H1(D)×H1(D) to some eigenfunction pair (v,w).

Proof. Because of the uniform interior bounds with respect to H1(D) we can apply weak

compactness again to show that the limit is indeed a non-trivial eigenfunction with ITE k.

Without relabeling a possibly extracted subsequence, we assume that v(m) ⇀ v and w(m) ⇀ w

in H1(D). Since
(
v(m),w(m)

)
∈ UA

(
κ(m)

)
, they are in particular weak solutions of the

following variational equation when testing against ϕ,ψ ∈H1(D) such that (ϕ−ψ)∈H1
0 (D)

∫

D
−A
(
∇w(m)

)
·∇ϕ +∇v(m) ·∇ψ +

(
κ(m)

)2
nw(m)ϕ −

(
κ(m)

)2
v(m)ψ dx

=
∫

∂D

(
A
(
∇w(m)

)
ν −∂νv(m)

)
ϕ ds .

Thanks to our asymptotically vanishing boundary data we obtain with (5.3)

∫

∂D

(
A
(
∇w(m)

)
ν −∂νv(m)

)
ϕ ds ≤ ‖ϕ‖

H
1
2 (∂D)

∥∥A
(
∇w(m)

)
ν −∂νv(m)

∥∥
H

− 1
2 (∂D)

.

As the right-hand side tends to zero for m → ∞, we see with (i) that the pair (v,w) indeed

solves (5.2), i.e.

∫

D
−A(∇w) ·∇ϕ +∇v ·∇ψ + k2nwϕ − k2vψ dx = 0 .

In particular, A(∇w)ν = ∂νv holds in the sense of H− 1
2 traces. The fact that (v−w) ∈ H1

0 (D)

follows from the continuity of the trace operator τ : H1(D)→ H
1
2 (∂D) and the evanescent
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Dirichlet data for
{(

v(m)−w(m)
)}

m∈N ⊂ H1(D) when m → ∞. Thus we are left to prove that

(v,w) is non-trivial.

For this purpose we observe that if we had an estimate like (ii) for the weaker L2(D)

norm, i.e.

liminf
m→∞

(∥∥v(m)
∥∥2

L2(D)
+
∥∥w(m)

∥∥2
L2(D)

)
> 0 ,

our eigenfunction candidate (v,w) would immediately be non-trivial by its definition as weak

H1(D)-limit which is compactly embedded in L2(D). Therefore, we assume contrarily that

there exists a subsequence, not relabeled, such that

lim
m→∞

(∥∥v(m)
∥∥2

L2(D)
+
∥∥w(m)

∥∥2
L2(D)

)
= 0 , (5.4)

which implies that our uniform lower bound from (ii) is now completely concentrated on the

gradients, i.e.

liminf
m→∞

(∥∥∇v(m)
∥∥2

L2(D)
+
∥∥∇w(m)

∥∥2
L2(D)

)
≥C > 0 . (5.5)

Since v(m) is a strong solution of the Helmholtz equation with wave number κ(m), we may

use integration by parts with ψ ∈ H1(D) to obtain

∫

D
∇v(m) ·∇ψ dx =

∫

D

(
κ(m)

)2
v(m)ψ dx+

∫

∂D
∂νv(m)ψ ds .

By duality and supm

∥∥v(m)
∥∥2

H1(D)
< C we conclude that also supm

∥∥∂νv(m)
∥∥

H
− 1

2 (∂D)
< ∞.

With ψ = u(m), where u(m) := v(m) −w(m), the above right-hand side then vanishes for

m → ∞ due to (5.4) and (iii), so we obtain the relation

lim
m→∞

∫

D
∇v(m) ·∇u(m) dx = 0 . (5.6)

For the remainder of the proof we try to find a contradiction to (5.6) by incorporating our

explicit assumptions on the eigenvalues of A. First note that u(m) can also be characterized as

a weak solution of the system

∆Au(m)+n
(
κ(m)

)2
u(m) = ∆A−Iv

(m)+(n−1)
(
κ(m)

)2
v(m) in D

u(m) = v(m)−w(m) on ∂D

A
(
∇u(m)

)
ν = A

(
∇v(m)−∇w(m)

)
ν on ∂D
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with identity tensor I : C1×2 → C
1×2. Its variational form reads for ψ ∈ H1(D)

∫

D

(
−A
(
∇u(m)

)
+(A− I)

(
∇v(m)

))
·∇ψ dx

=
∫

D

(
κ(m)

)2(
(n−1)v(m)−nu(m)

)
ψ dx+

∫

∂D

(
∂νv(m)−A

(
w(m)

)
ν
)
ψ ds .

(5.7)

Assume first that A∗ > 1. Choosing ψ = w(m) in (5.7) and taking the limit m → ∞, (5.6),

(5.4) and some uniform upper bound on
∥∥w(m)

∥∥
H

1
2 (∂D)

yield

0 = lim
m→∞

∫

D

(
−A
(
∇u(m)

)
+(A− I)

(
∇v(m)

))
·∇w(m) dx

= lim
m→∞

∫

D

(
−A
(
∇u(m)

)
+(A− I)

(
∇u(m)+∇w(m)

))
·∇w(m) dx

= lim
m→∞

∫

D

(
(A− I)

(
∇w(m)

)
−∇u(m)

)
·∇w(m) dx

= lim
m→∞

∫

D
(A− I)

(
∇w(m)

)
·∇w(m)−∇u(m) ·∇

(
v(m)−u(m)

)
dx

= lim
m→∞

∫

D
(A− I)

(
∇w(m)

)
·∇w(m)+

∣∣∇u(m)
∣∣2dx− lim

m→∞

∫

D
∇v(m) ·∇u(m) dx

= lim
m→∞

∫

D
(A− I)

(
∇w(m)

)
·∇w(m)+

∣∣∇u(m)
∣∣2dx

≥ lim
m→∞

(
(A∗−1)

∥∥∇w(m)
∥∥2

L2(D)
+
∥∥∇u(m)

∥∥2
L2(D)

)
.

Therefore ∇w(m) → 0 in L2(D) and since ∇u(m) → 0 in L2(D) as well, we may conclude

lim
m→∞

(∥∥∇v(m)
∥∥2

L2(D)
+
∥∥∇w(m)

∥∥2
L2(D)

)
= 0 ,

which is a contradiction to (5.5) in the case A∗ > 1. If A∗ < 1, we first rewrite (5.6), using

symmetry of Ã, in the following way

0 = lim
m→∞

−
∫

D
∇v(m) ·∇u(m) dx

= lim
m→∞

∫

D
(−A+A− I)

(
∇v(m)

)
·∇u(m) dx

= lim
m→∞

∫

D
−A
(
∇v(m)

)
·∇u(m)+(A− I)

(
∇v(m)

)
·∇u(m) dx

= lim
m→∞

∫

D
−A
(
∇u(m)

)
·∇v(m)+(A− I)

(
∇v(m)

)
·∇u(m) dx
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and observe that a combination of (5.7) with ψ = v(m) and ψ = u(m), respectively, yields

thanks to (5.4) and the vanishing boundary data

lim
m→∞

∫

D
−A
(
∇u(m)

)
·∇v(m)+(A− I)

(
∇v(m)

)
·∇u(m) dx

= lim
m→∞

∫

D
(I −A)

(
∇v(m)

)
·∇v(m)+A

(
∇u(m)

)
·∇u(m) dx .

Putting both equations together gives

0 = lim
m→∞

∫

D
(I −A)

(
∇v(m)

)
·∇v(m)+A

(
∇u(m)

)
·∇u(m) dx

≥ lim
m→∞

(
(1−A∗)

∥∥∇v(m)
∥∥2

L2(D)
+A∗

∥∥∇u(m)
∥∥2

L2(D)

)
.

This again implies that

lim
m→∞

(∥∥∇v(m)
∥∥2

L2(D)
+
∥∥∇w(m)

∥∥2
L2(D)

)
= 0 ,

which also contradicts (5.5) in the case A∗ < 1.

The updated error estimate for ITE defects in terms of approximate eigenfunctions in the

anisotropic case reads:

Lemma 19. Let k be an ITE with eigenfunction pair (v,w) ∈ H1(D)×H1(D) and assume

that (ṽ, w̃) ∈UA(κ). If

∣∣∣∣
∫

D vṽ−nww̃dx

∣∣∣∣
‖ṽ‖L2(D)+‖w̃‖L2(D)

≥ ε̃ > 0 , (5.8)

then there exists a constant C̃ > 0 which depends only on the boundary data of (v,w) such

that for admissible (ṽ, w̃) it holds that

|k2 −κ2| ≤ C̃

ε̃

√
‖ṽ− w̃‖2

H
1
2 (∂D)

+‖∂ν ṽ−A(w̃)ν‖2

H
− 1

2 (∂D)

‖ṽ‖L2(D)+‖w̃‖L2(D)

. (5.9)
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Proof. We compute with (5.3), using symmetry of Ã,

k2
∫

D
ṽv−nw̃wdx

=
∫

D
−ṽ∆v+ w̃∆Awdx

=
∫

D
∇ṽ ·∇vdx−

∫

D
∇w̃ ·A(∇w)dx

−〈∂νv, ṽ〉
H

− 1
2 (∂D),H

1
2 (∂D)

+ 〈A(∇w)ν , w̃〉
H

− 1
2 (∂D),H

1
2 (∂D)

=
∫

D
∇ṽ ·∇vdx−

∫

D
A(∇w̃) ·∇wdx−〈∂νv, ṽ− w̃〉

H
− 1

2 (∂D),H
1
2 (∂D)

=
∫

D
−v∆ṽ+w∆Aw̃dx+ 〈∂ν ṽ,v〉

H
− 1

2 (∂D),H
1
2 (∂D)

−〈A(∇w̃)ν ,w〉
H

− 1
2 (∂D),H

1
2 (∂D)

−〈∂νv, ṽ− w̃〉
H

− 1
2 (∂D),H

1
2 (∂D)

= κ2
∫

D
ṽv−nw̃wdx+ 〈∂ν ṽ−A(∇w̃)ν ,v〉

H
− 1

2 (∂D),H
1
2 (∂D)

−〈∂νv, ṽ− w̃〉
H

− 1
2 (∂D),H

1
2 (∂D)

.

Rearranging, we obtain

(k2 −κ2)
∫

D
ṽv−nw̃wdx

=〈∂ν ṽ−A(∇w̃)ν ,v〉
H

− 1
2 (∂D),H

1
2 (∂D)

−〈∂νv, ṽ− w̃〉
H

− 1
2 (∂D),H

1
2 (∂D)

and taking absolute values yields

∣∣∣〈∂ν ṽ−A(∇w̃)ν ,v〉
H

− 1
2 (∂D),H

1
2 (∂D)

∣∣∣+
∣∣∣〈∂νv, ṽ− w̃〉

H
− 1

2 (∂D),H
1
2 (∂D)

∣∣∣

≤‖∂ν ṽ−A(∇w̃)ν‖
H

− 1
2 (∂D)

‖v‖
H

1
2 (∂D)

+‖∂νv‖
H

− 1
2 (∂D)

‖ṽ− w̃‖
H

1
2 (∂D)

≤
√

‖v‖2

H
1
2 (∂D)

+‖∂νv‖2

H
− 1

2 (∂D)

√
‖ṽ− w̃‖2

H
1
2 (∂D)

+‖∂ν ṽ−A(∇w̃)ν‖2

H
− 1

2 (∂D)

=C̃

√
‖ṽ− w̃‖2

H
1
2 (∂D)

+‖∂ν ṽ−A(∇w̃)ν‖2

H
− 1

2 (∂D)
,

where

C̃ :=
√

‖v‖2

H
1
2 (∂D)

+‖∂νv‖2

H
− 1

2 (∂D)
.
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Corollary 3 can also be restated in the following way.

Corollary 20. Let conditions (i)–(iii) of Theorem 18 hold for
{(

v(m),w(m),κ(m)
)}

m∈N ⊂
UA ×C which detects some ITE k. Assume that each eigenfunction pair (v,w) from the

eigenspace of k fulfills

∫

D
v2 −nw2 dx 6= 0 (5.10)

(or alternatively ‖v‖2
L2(D)

−n‖w‖2
L2(D)

6= 0 if k = kR). Then there is a constant C > 0 which

depends only on the data of corresponding (v,w) such that

∣∣∣k2 −
(
κ(m)

)2
∣∣∣≤C

√∥∥v(m)−w(m)
∥∥2

H
1
2 (∂D)

+
∥∥∂νv(m)−A

(
∇w(m)

)
ν
∥∥2

H
− 1

2 (∂D)

‖v(m)‖L2(D)+‖w(m)‖L2(D)

. (5.11)

It would be helpful to derive concrete conditions under which the integral constraint

(5.10) does not vanish similar to Theorem 4. However, since the ITP eigenfunctions v and

w are not representable via their difference in a closed fashion like in (4.4) any more, the

derived proof does not apply in the anisotropic case and a corresponding result remains open.

However, Corollary 5 keeps valid as a consequence of (5.2) choosing ϕ = w and ψ = v and

taking imaginary parts.

5.2.2 Approaching the method of fundamental solutions’ framework

Again, the abstract results presented so far hold for general boundary approximation methods

of Trefftz-kind to compute ITEs of anisotropic media. Getting more concrete, we want to

refocus on the MFS setting which requires to find the fundamental solution ΦA,κ of the

operator ∆A + nκ2I first. Recall that the associated matrix Ã ∈ R
2×2 for the tensor A is

symmetric positive definite so there also exists a unique symmetric positive definite root

Ã
1
2 ∈ R

2×2 such that Ã
1
2 Ã

1
2 = Ã. Therefore we may define the pulled-back scatterer

DA := Ã− 1
2 D ∈ R

2 .

The following lemma shows that the anisotropic PDE for w solved within the ITP on D is

equivalent to a pure Helmholtz equation on DA.

Lemma 21. The function w ∈ H1(D) is a solution of ∆Aw+ nκ2w = 0 in D if and only if

its pull-back wA ∈ H1(DA) defined by wA(·) := w
(
Ã

1
2 ·
)

solves ∆wA + nκ2wA = 0 on DA.

Likewise, if Φ√
nκ is the fundamental solution of the Helmholtz equation with wave number
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κ
√

n, then

ΦA,
√

nκ := det
(
Ã− 1

2
)
Φ√

nκ

(
Ã− 1

2 •
)

(5.12)

solves (∆A +nκ2)ΦA,
√

nκ = δ0(·) in the sense of distributions.

Proof. We associate for any ϕ ∈ H1
0 (D) a representative ϕA := ϕ

(
Ã

1
2 •
)
∈ H1

0 (DA). Then

the two PDEs under consideration are connected via

∫

DA

∇wA(xA) ·∇ϕA(xA)−nκ2wA(xA)ϕA(xA) dxA

=
∫

DA

(
∇w
(
Ã

1
2 xA

)
Ã

1
2
)
·
(
∇ϕ
(
Ã

1
2 xA

)
Ã

1
2
)
−nκ2w

(
Ã

1
2 xA

)
ϕ
(
Ã

1
2 xA

)
dxA

= det
(
Ã− 1

2
)∫

D

(
∇w(x)Ã

1
2
)
· (∇ϕ(x)Ã

1
2
)
−nκ2w(x)ϕ(x) dx

= det
(
Ã− 1

2
)∫

D

(
∇w(x)Ã

)
·∇ϕ(x)−nκ2w(x)ϕ(x) dx

= det
(
Ã− 1

2
)∫

D
A(∇w) ·∇ϕ −nκ2wϕ dx .

As in Section 4.3.2, having fixed some source contour Γ of class C2 with |Γ| < ∞, the

admissible trial function set UA can now be updated for the MFS by

UA,MFS :=
⋃

0≤arg(κ)≤ π
2

UA,MFS(κ) ,

where we set for κ ∈ C\{0}

UA,MFS(κ) :=
{(

ṽ, w̃
)

: ṽ = Φκ ∗|Γ a, w̃ = ΦA,
√

nκ ∗|Γ b, (a,b) ∈ L2(Γ)×L2(Γ)
}

and

ΦA,
√

nκ = det
(
Ã− 1

2
)
H

(1)
0

(√
nκ
∣∣Ã− 1

2 •
∣∣)

according to (5.12). Analogue to Lemma 6, UA,MFS(κ) can be discretized with respect to

increasing sets of source points. Hence we directly proceed with UA,MFS to prove density

with respect to ITP eigenfunctions in H1(D). Note that the difference v−w is by definition

as good as v and w each which thus separates the approximation problem without loss of

regularity unlike in the isotropic case. We start with the analysis for v:
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Theorem 22. Let v ∈ H1(D) be a solution to the Helmholtz equation with wave number

0≤ arg(κ)≤ π
2 . Then there exists a sequence of elements v(m)=Φκ ∗|Γ a(m) with a(m) ∈ L2(Γ)

such that v(m) → v in H1(D).

Proof. The following proof is inspired by Lemma 2.1 from [25]. Hence we also aim to show

that, for fixed κ , the adjoint

h 7→
∫

D
Φκ(•− x)h(x)+∇xΦκ(•− x) ·∇h(x)dx ∈ L2(Γ) (5.13)

(we use ∇• to relate differentiation to its underlying variables) of the boundary convolution

operator a 7→ Φκ ∗|Γ a ∈ {v ∈ H1(D) : ∆v+κ2v = 0} is injective which would then give the

desired density result. For this we assume that h ∈ {v ∈ H1(D) : ∆v+κ2v = 0} is chosen

such that the entire function v defined by the complex-conjugated right-hand side of (5.13)

vanishes along Γ while inheriting the Sommerfeld radiation condition from Φκ and ∇xΦκ .

By analyticity and uniqueness of radiating exterior Helmholtz solutions for Im(κ)≥ 0, see

[72, 32], we conclude that v|Dc = 0 and by regularity properties of the underlying potential

v ∈ H1
0 (D). Since h solves the Helmholtz equation in a weak sense with respect to κ by

assumption, this implies on the one hand

∫

D
−∇h ·∇v+κ2hv dx = 0 .

On the other hand, we can find a sequence
{

h(m)
}

m∈N ⊂D(R2) such that h(m) → h in H1(D).

Now we compute, using integration by parts without boundary contributions as well as the

fundamental solution property of the kernel Φκ

∫

D
−∇h ·∇v+κ2hv dx

= lim
m→∞

∫

R2
−∇h(m) ·∇v+κ2h(m)vdx

= lim
m→∞

∫

R2
v(∆+κ2)h(m) dx

= lim
m→∞

∫

R2

(∫

D
Φκ(x− y)h(y)+∇yΦκ(x− y) ·∇h(y)dy

)
(∆+κ2)h(m)(x)dx

= lim
m→∞

(∫

R2

∫

D
Φκ(x− y)h(y)dy(∆+κ2)h(m)(x)dx

−
∫

R2

∫

D
∇xΦκ(x− y) ·∇h(y)dy(∆+κ2)h(m)(x)dx

)
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= lim
m→∞

(∫

R2

∫

D
Φκ(x− y)h(y)dy(∆+κ2)h

(m)
(x)dx

+
∫

R2

∫

D
Φκ(x− y)∇h(y)dy · (∆+κ2)∇h(m)(x)dx

)

= lim
m→∞

∫

R2
(∆x +κ2)

∫

D
Φκ(x− y)h(y)dyh(m)(x)dx

+
∫

R2
(∆x +κ2)

∫

D
Φκ(x− y)∇h(y)dy ·∇h(m)(x)dx

= lim
m→∞

∫

R2
(1Dh)h(m)+(1D∇h) ·∇h(m) dx

=‖h‖H1(D) .

Hence ‖h‖H1(D) = 0 which in turn implies injectivity of (5.13).

The complementing density proof for the approximation of w with corresponding trial

functions in UA,MFS can be inherited from the results of v by a pull-back argument.

Corollary 23. Let w ∈ H1(D) be a solution to ∆Aw+ κ2w = 0 with wave number 0 ≤
arg(κ)≤ π

2 . Then for there exists w(m) = ΦA,κ ∗|Γ b(m) with b(m) ∈ L2(Γ) such that w(m) → w

in H1(D).

Proof. For any solution w ∈ H1(D) of ∆Aw+ k2w = 0 we know by Lemma 21 that wA :=

w
(
Ã

1
2 •
)
∈ H1(DA) solves ∆wA +κ2wA = 0 on DA. We also associate a surrounding source

boundary with the pulled-back scatterer DA by ΓA := Ã− 1
2 Γ. Then Theorem 22 guarantees

existence of a sequence
{

g
(m)
A

}
m∈N ∈ L2(ΓA) such that the functions

w
(m)
A :=

∫

ΓA

Φκ(•− sA)g
(m)
A (sA) dsA

fulfill w
(m)
A → wA in H1(DA). Using the transformation formula for curvilinear coordinates,

e.g. [46], w
(m)
A can also be expressed in terms of ΦA,κ according to

w
(m)
A (xA)

=
∫

ΓA

Φκ(xA − sA)g
(m)
A (sA) dsA

=
∫

Γ
Φκ

(
xA − Ã− 1

2 s
)
g
(m)
A (Ã− 1

2 s)
∣∣Ã− 1

2 ν
∣∣det
(
Ã− 1

2
)

ds

=
∫

Γ

(
det
(
Ã− 1

2
)
Φκ

(
xA − Ã− 1

2 s
))(

g
(m)
A

(
Ã− 1

2 s
)∣∣Ã− 1

2 ν
∣∣
)

ds

=
∫

Γ
ΦA,κ

(
Ã

1
2 xA − s

)
g(m)(s) ds ,
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for every xA ∈DA, where we set g(m)(s) := g
(m)
A

(
Ã− 1

2 s
)∣∣Ã− 1

2 ν
∣∣ for the transformed coefficient

functions. Therefore, w(m) := w
(m)
A

(
Ã

1
2 •
)

satisfies

∥∥w
(m)
A −wA

∥∥2
H1(DA)

=
∫

DA

∣∣w(m)
A −wA

∣∣2 dxA +
∫

DA

∣∣∇w
(m)
A −∇wA

∣∣2 dxA

=
∫

D
det
(
Ã− 1

2
)∣∣(w(m)

A −wA

)(
Ã− 1

2 x
)∣∣2 dx+

∫

D
det
(
Ã− 1

2
)∣∣(∇w

(m)
A −∇wA

)(
Ã− 1

2 x
)∣∣2 dx

= det
(
Ã− 1

2
)(∫

D

∣∣w(m)−w
∣∣2 dx+

∫

D

∣∣(∇w(m)−∇w
)
Ã

1
2
∣∣2 dx

)

≥ det
(
Ã− 1

2
)

min
{

1,
√

A∗
}(∫

D

∣∣w(m)−w
∣∣2 dx+

∫

D

∣∣(∇w(m)−∇w
)∣∣2 dx

)

= det
(
Ã− 1

2
)

min
{

1,
√

A∗
}∥∥w(m)−w

∥∥2
H1(D)

.

With the same pull-back argument as in the proof above, the convergence rate analysis

from Section 4.3.3, especially Theorem 16, takes over to the anisotropic case yet with

different source contours Γv = ∂BR(0) and Γw = Ã− 1
2 Γv for v and w, respectively, provided

the eigenfunction pair (v,w) is known to be more regular than in H1(D)×H1(D). The

original case when Γ = Γv = Γw will only be investigated numerically in the sequel for which

we state the next corollary as a summary of this subsection.

Corollary 24. Let k be any ITE with 0 ≤ arg(k)≤ π
2 . Then there exist MFS trial functions{(

v(m),w(m),κ(m)
)}

m∈N ∈UA,MFS ×C such that (i)–(iii) from Theorem 18 are satisfied.

Proof. The assertion follows by setting κ(m) = k and κ(m) =
√

nk in Theorem 22 and Corol-

lary 23, respectively.

5.3 The modified method of fundamental solutions from a

numerical perspective

In virtue of the different assumptions on ITP eigenfunctions for isotropic and anisotropic

media, we have provided individual approximation setups each that remain to be implemented

numerically for the latter. After establishing corresponding modified MFS version, we will

use it to compute exemplary ITEs and particularly focus on new phenomena arising in

comparison with the isotropic case.
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5.3.1 Implementation details

We aim to adapt the modified MFS algorithm as presented in Subsection 4.4.1 to anisotropic

media. Our numerical guidelines should likewise reflect a synthesis of Theorem 18 and

Lemma 19 to have a reliable basis for the proposed computation routine. Hence, recall

that the purpose of the introduced modified MFS matrix M(κ) is to store both boundary

collocation and interior data from admissible ITP trial functions which need to be optimized

in a further step to give a sufficiently small ratio. However, the actual norms required in

conditions (ii) and (iii) of Theorem 18 are different from those in Theorem 8. In practice,

we take as usual a variable number of collocation points
{

x(1,m), . . . ,x(m,m)
}
⊂ ∂D, sources{

s(1,m), . . . ,s(m,m)
}
⊂ Γ along some admissible contour Γ surrounding D and fixed random

indicator points
{

x̂(1,m̂), . . . ,x(m̂,m̂)
}
∈ D. Then we set

M(κ) =




B(κ) BA(
√

nκ)

∇B(κ)ν A(∇BA(
√

nκ))ν

Î(κ) 0

∂1Î(κ) 0

∂2Î(κ) 0

0 ÎA(
√

nκ)

0 ∂1ÎA(
√

nκ)

0 ∂2ÎA(
√

nκ)




, (5.14)

where the boundary matrices in the first two block lines are given by (3.4) and (3.5), re-

spectively. Recall that in this form, they still circumvent the abstract fractional Sobolev

norms from (iii) of Theorem 18 similar to (4.34), so the characteristically higher regularity

of eigenfunctions in the anisotropic case should at least be numerically reflected now by

some consistent implementation of the refined interior bounds (ii). Therefore, we have added

to Î(κ) and ÎA(κ) in (5.14) also gradient contributions of corresponding MFS trial functions,

i.e.

∂iÎT (κ) :=




∂iΦT,κ

(
x(1/m̂)− s(1/m)

)
. . . ∂iΦT,κ

(
x(1/m̂)− s(m/m)

)
...

. . .
...

∂iΦT,κ

(
x(m̂/m̂)− s(1/m)

)
. . . ∂iΦT,κ

(
x(m̂/m̂)− s(m/m)

)


 ∈ C

m̂×m ,
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for i = 1,2. Our proposed modified MFS for anisotropic media is then obtained as in Figure

3.5 by performing a QR factorization of M(κ)

M(κ) = Q(κ)R(κ) =

(
QB(κ)

QI(κ)

)
R(κ) , R(κ),QB(κ) ∈ C

2m×2m

and extracting local minimizers κ(m) ∈ C\{0} of

κ 7→ σmin(κ) = min
η∈C2m,|η |=1

|QB(κ)η | .

5.3.2 Numerical results

Since there are only few other works addressing the numerics of ITEs for anisotropic media

so far, see [26], we want to apply the modified MFS in that context, too. We would like

to go a bit further and focus more closely on the two cases A∗ > 1 and A∗ < 1 which will

turn out to be significantly different instead of only disjoint auxiliary situations for technical

reasons. To see this, let us confine to the real-valued ITE spectrum for simplicity, fix n = 4

and assume first that Ã = aI with a ∈ {0.99,1.0,1.01} is pseudo-anisotropic, i.e. we perturb

the homogeneous isotropic case (4.3), where a = 1, slightly from below and above by a

scalar factor. Figure 5.1 was generated for D being the unit disc with m = 20 sources and

collocation points each lying equidistantly on concentric circles of radius 5 and 1, respectively.

Supplementarily, we take m̃ = 10 indicator points randomly in the interior. As evanescent

valleys of the smallest-singular-value-function shall indicate existence of nearby ITEs, the

plot already shows that while the trivial ITE k = 0 keeps uniformly isolated for a < 1, there

seems to be an accumulation of eigenvalues around zero if a > 1, consisting of 9 ones so far.

Since the ITP is rotationally symmetric for any a > 0, we may again compute eigenvalues

analytically using a Fourier-Bessel expansion, see [20]. Accordingly, we need to solve

det

(
Jp(κ) Jp

(√
n
a
κ
)

κJ′p(κ)
√

naκJ′p
(√

n
a
κ
)
)

= 0 ,

whose roots in κ coincide with those of

gp(κ,a) = fp(κ)−
fp

(√
n
a
κ
)

a
, (5.15)
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shows that the situation is even worse for a ց 1 since an accumulation of ITEs around zero

is induced. Our interpretation of this observation is that the eigenspace of k = 0 for a = 1,

which consists of all harmonic functions v = w, emerges from the collection of eigenstates

that are absorbed by the trivial ITE in the right-hand-side limit of a.

Lemma 25. Fix n > 1. Then for any p ∈ N and any upper threshold κ > 0 there exists

ap > 1 such that for all ap > a > 1 there exists a positive root kp,a of gp(·,a) from (5.15) with

κ > kp,a. The same holds true for the sign relations n < 1 and ap < a < 1 correspondingly.

Proof. We will work with n,a > 1 since the proof for the converse case can be performed

in a similar fashion. We will make use of the intermediate value theorem to prove that

the continuous function gp(·,a) switches its sign in the interval (0,κ) for sufficiently close

1 < a < ap. For this we first note that by (5.16) we have that

gp(0,a) =
a−1

a
> 0 (5.18)

for all a > 1. We want to show next that gp(κp,a)< 0 for some 0 < κp < κ and for every

1 < a < ap. Since fp(y) = 1+ y2/(2p(p+1))+O(yp+4) for y → 0, we can always find an

open interval Ip = (0, ip), ip > 0 on which fp is strictly monotonically increasing. For now

we fix 0 < κp < κ such that κp

√
n < ip as well as some 1 < ã < n. Then we set

ap := min

{
ã,

fp(
√

n
ã
κp)

fp(κp)

}
> 1 .

Hence, for any 1 < a < ap we get by monotonicity of fp on Ip that

0 > fp(κp)−
fp(
√

n
ã
κp)

a
> fp(κp)−

fp(
√

n
a
κp)

a
= gp(a,κp) .

Since κp is independent of a, the intermediate value theorem applies in combination with

(5.18) for all 1 < a < ap and thereby ensures the existence of roots kp,a > 0.

However, despite the different behavior of the eigenvalues for a ր 1 and a ց 1 including

their retarded numerical appearance in the latter case with n > 1, it should be noted that

Figures 5.1 and 5.2 also indicate that for any approximate ITE k− with a < 1 we can find

early, with respect to the number of collocation points, a neighboring ITE k+ for a > 1 with

the same limit point when both a approach 1: Our exemplary reference pair from the right

corner of the plot is computed by the modified MFS with machine precision and detects the

smallest real-valued ITEs 2.882728798537896 and 2.922641535098038 of the unit disc for

a = 0.99 and a = 1.01, respectively, thus surrounding closely k
(1)
R

≈ 2.902608055212766
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(A11,A22,n) from

Material class (A11,A22,n)

(A∗ < 1,n = 1)
(

1
8 ,

1
2 ,1
)

(A∗ > 1,n = 1) (2,8,1)

(A∗ < 1,n > 1)
(

1
8 ,

1
2 ,4
)

(A∗ > 1,n > 1) (2,8,4)

(5.19)

as representative parameters for our ITE computations and employ again the successively-

deformed test scatterers from Chapter 4 to better retrace the numerical behavior of the

modified MFS. We pick m̂ = 10 random interior points each whose precise distribution keeps

numerically irrelevant as before. To compensate the more complex anisotropic structure

of corresponding fundamental solutions, the source points are now either manually fixed

equiangularly on Γ = ∂D(S), coinciding with the boundary of a slightly scaled-up scatterer

by a factor S > 1 (i.e. ∂D(1) = ∂D), or on outer circles Γ = ∂BR(0) with proper radii R. Our

scatterer determine then quite individually if and how to choose S or R, respectively. As

derived from the isotropic case, the larger S or R is, the faster the MFS output is expected

to converge with respect to m up to a certain threshold, but simultaneously ill-conditioning

effects are likely to impede the detection. With these conventions, m in combination with S or

R and modeling parameters given by (5.19) fully describes our modified MFS setup. We start

again with the unit disc interpreted as an ellipse with equal axes and shrink the minor axis b

in y-direction step by step to 0.8, 0.5 and 0.3. Respective results are shown in Figure 5.3 with

m = 30, . . . ,60 and are obtained for R = 5b. We observe that not only the scattering shape

itself influences the numerical accuracy, but also the material parameters. An explanation for

the latter is that the anisotropic parameters enter in our MFS ansatz as inner variations of

the underlying fundamental solution, see (5.12), which, in terms of a pull-back, resembles

spatial evaluations of isotropic radial basis functions along more or less deformed collocation

boundaries.

Next, we focus on the transition from an ellipse to a kite shape parametrized by (4.38)

whose deformation parameter ε passes from 0 to 0.3. Figure 5.4 then displays our modified

MFS results for these samples and shows that more complex scattering shapes or concave

parts reduce the accuracy of the output as in the isotropic case. It is therefore necessary to

choose a compensating tighter scaling factor for Γ with respect to ∂D again which turns

out to work well for S = 2− ε . Likewise, the number of collocation points required for

accumulating approximate ITEs increases in comparison with the ellipses and ranges from

about 35 to 80 here. In comparison with Figure 5.3, material parameters do not show

significant effects on the computational output.
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(A11,A22,n) k
(1)
R

k
(2)
R

k
(3)
R

k
(4)
R

(1/8, 1/2, 1) 4.386 4.845 6.615 6.646

(2, 8, 1) 10.036 11.14 11.60 12.32

(1/8, 1/2, 4) 1.998 2.021 2.798 2.853

(2, 8, 4) 1.85 4.92 5.14 6.11

Fig. 5.5 First four approximate real-valued ITEs without counting multiplicity for the unit
square.



Chapter 6

More applications for the modified

method of fundamental solutions

We extend the modified MFS introduced for the two-dimensional isotropic case in Chapter 4

to the elastic ITP, to piecewise homogeneous media and lastly to three dimensional scatterers,

respectively. Since most of our developed theory can be inherited after solving minor

technical obstacles, we only sketch how to pass from one setup to another. The main focus

will be on numerical implementations and concrete examples to prove broader applicability

of the method as well as revealing model-specific effects.

6.1 The elastic interior transmission problem

The scalar acoustic model from Chapter 4 does not apply any more when vibrations within

isotropic solids D ⊂ R
2 need to be described since they respond to any kind of material

displacements u : D → C
2 with shear couplings, see [39]. Assuming therefore Hooke’s law

from linear elasticity

σ(∇u) = 2µε +λ tr(ε)I (6.1)

which relates strain ε =
(
∇u+(∇u)T

)
/2 and stress σ in a tensorial way, corresponding

waves are called elastic and propagate for time-harmonic states according to the Navier

equations

∆σ u+ρω2u = 0 . (6.2)
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Therein, ρ is a homogeneous material density ratio, ω is the vibration frequency and λ ,µ are

constitutive Lamé parameters which are constrained in 2D to fulfill µ > 0 and 2µ +λ > 0 in

order to guarantee strong ellipticity of the Navier operator ∆σ , see [76]. The elastic ITP then

becomes

∆σ v+ω2v = 0 in D

∆σ w+ρω2w = 0 in D

v = w on ∂D

σ(∇v)ν = σ(∇w)ν on ∂D

(6.3)

and imposes, as before in the isotropic context, the eigenfunction conditions v,w ∈ L2(D,C2)

and (v−w)∈ H2
0 (D,C2). However, ITEs ω ∈C\{0} represent particular frequencies instead

of wave numbers now whose physical unit is formally converted through µ,λ .

Mathematically, the acoustic and elastic ITP distinguish by the differential operators

involved as well as the range dimensions of their eigenfunctions. Still, they share general

PDE structures and thus enable a common analytical approach for main ITE studies, cf.

[11] and [28]. Numerically, the elastic ITP is less explored, see [52, 84, 100, 101], which is

why we want to present the modified MFS and provide results in that case, too. Our survey

is reproduced from [68] where also underlying approximation theory for C1,1-domains D

analogue to Section 4.3 is detailed to justify upcoming calculations.

First of all, we need a proper fundamental solution system for (6.2) whose non-unique

choice should be made carefully. For instance, in Theorem 8 we have seen that radiation

conditions which yield uniqueness of exterior Helmholtz solutions guarantee dense MFS trial

functions independent of the source contour Γ. In order to obtain a corresponding result for

the Navier system, we note that by the Helmholtz decomposition, see [73], any entire solution

ũ = ũp + ũs can be divided into a longitudinal compressional part ũp and a transversal shear

contribution ũs which then solve

∆ũp +κ2
pũp = 0 and ∆ũs +κ2

s ũs = 0

with wave numbers

κ2
p :=

ρω2

λ +2µ
and κ2

s :=
ρω2

µ
. (6.4)



6.1 The elastic interior transmission problem 99

The vector field u is then said to fulfill the 2D Kupradze’s radiation condition if

lim
r→∞

√
r(∂rũp − iκpũp) = 0 and lim

r→∞

√
r(∂rũs − iκsũs) = 0

uniformly in all angular directions. The radiating fundamental solution system for (6.2) in

the above sense is given by

Φσ ,ω2 =
i

4µ
H

(1)
0 (ks| • |) · I+

i
4ω2 ∇⊤∇

(
H

(1)
0 (kp| • |)−H

(1)
0 (ks| • |)

)
,

where I ∈ C
2×2 is the identity matrix, see [9]. Recalling that Φσ ,ω2 adopts all the relevant

scalar operations despite its multidimensional range, see Section 2.4, the modified MFS for

the elastic ITP can be derived as in (4.34) – (4.36) but in terms of block matrices for each

Φσ ,ω2-evaluation: Selecting for any scatterer D and some accompanying source contour

Γ the usual m-dependent points
{

x(1/m), . . . ,x(m/m)
}
⊂ ∂D and

{
s(1/m), . . . ,s(m/m)

}
⊂ Γ,

respectively, as well as
{

x̂(1/m̂), . . . , x̂(m̂/m̂)
}
⊂ D randomly, the modified MFS matrix reads

M(ω) =




Bσ (ω) Bσ (
√

ρω)

σ(∇Bσ (ω))ν σ(∇Bσ (
√

ρω))ν

Îσ (ω) 0

0 Îσ (
√

ρω)


 .

Approximate ITEs ω=ω
(m) are then again characterized by making the squared boundary-

restricted unitary part QB(ω) of M(ω) sufficiently singular, cf. Figure 3.5.

Based on this, we exemplarily compute ITEs for a disc Dd of radius 0.5, for an ellipse

De with a minor and major semi-axis of length 0.5 and 1, respectively, for a kite-shaped

scatterer Dk defined by setting ε = 0.3 in (4.38) and for the unit square Ds. We fix the

material parameters

µ =
1
16

, λ =
1
4
, ρ = 4

which were also used in the context of [52]. In particular, we aim at improving the numerical

results from there via the modified MFS in the following. Supplementarily, we take the

source boundaries Γd = 2 ·∂Dd ,Γe = 1.9 ·∂De ,Γk = 1.6 ·∂Dk ,Γs = 1.3 ·∂Ds where the

multiplication is understood as scaling with respect to the origin. Both collocation and source

points are distributed equiangularly on corresponding boundaries while the remaining m̂ = 10

interior samples are fixed randomly inside of the domains. With these input arrangements,

Figure 6.1 lists our successfully-refined ITE results in the elastic case and confirms that,
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Shape ω
(1)
R

ω
(2)
R

ω
(3)
R

ω
(4)
R

disc 1.451304027606383 1.704638247023373 1.984530256321993 2.269112085458542
ellipse 1.296728136516 1.302785814026 1.540896035208 1.565151107263
kite 0.947 1.047 1.111 1.235
square 1.3938 1.6182 1.8020 1.9362

Fig. 6.1 First four approximate real-valued ITEs without counting multiplicity for several
scatterers with material parameters µ = 1/16, λ = 1/4, ρ = 4.

despite the larger matrix size compared to (4.34) for each m due to vector-valued trial

functions, the modified MFS is barely affected by additional range dimensions. It actually

substantiates our numerical observations from Subsection 4.4.2.

6.2 The interior transmission problem for piecewise homo-

geneous media

In many real-world scenarios the scatterer of interest is macroscopically a composition of

different material components, either due to inner pollutions or manufactured structures.

Depending on the modeling resolution required, the constitutive parameters need to be

adapted. In order to make still use of the modified MFS for corresponding ITE computations

which has only been established for constant-coefficient ITPs so far, we investigate the

relaxed isotropic case when either n > 1 or 0 < n < 1 is piecewise constant on D, i.e. the

medium consists of finitely many, say d ∈ N, homogeneous components. Accordingly, we

also partition
⋃d

h=1 D(h/d) ⊂ D ⊂ D =
⋃d

h=1 D
(h/d)

such that n(h/d) := n|D(h/d) = const where

all D(h/d) are disjoint, open and connected. We can then apply the modified MFS on each

D(h/d) in the sense that trial functions need to match as smooth as possible across transitional

component boundaries. We will sketch the accompanying mathematical framework for the

2D acoustic ITP from (4.3) with the above restrictions on n in the following. For a more

detailed analysis, we refer to the underlying studies in [86] from which we also copy the

numerical results.

First, we point out that material inhomogeneities will be restricted to inner components

which are compactly contained in another one completely, see Figure 6.2. Otherwise, the

global domain regularity necessary for using the trace theorem as in Chapter 4, e.g. Theorem

1, would not be transferable any more to each component due to arising cusps. We thus

assume the existence of a surrounding bulk material given by D(1/d) and which encompasses

∂D ⊂ ∂D(1/d) while ∂D∩∂D(h/d) = /0 for 2 ≤ h ≤ d. We also demand for i 6= j that either

∂D(i/d)∩∂D( j/d) = /0 or ∂D(i/d)∩∂D( j/d) is a closed C1,1-curve. In particular, meshing of
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We can now formulate the modified MFS for piecewise homogeneous media: Having

found for some environment of κ proper Γ(h/d,r/hc) with m source points each, we also

choose m collocation points
{

x(i< j/d,1/m), . . . ,x(i< j/d,m/m)
}

if ∂D(i/d)∩∂D( j/d) 6= /0 for the

ordered indices 0 ≤ i < j ≤ d. Here, we have set D(0/d) := D
c

to include the overall domain

boundary, too. In particular, x(0< j/d,l/m) does not exist as such for any 2 ≤ j and 1 ≤ l ≤ m

due to our bulk assumption on D(1/d), for example. Finally, we choose as usual random

interior points
{

x̂(1/m̂), . . . , x̂(m̂/m̂)
}
⊂ D independent of the component decomposition. The

modified MFS matrix then reads

M(κ) :=




B(1/1c,0<1/d)(κ) B(1/1c,0<1/d)(
√

n(1/d)κ) . . . B(1c/1c,0<1/d)(
√

n(1/d)κ) 0 . . .

0 B(1/1c,1<2/d)(
√

n(1/d)κ) . . . B(1c/1c,1<2/d)(
√

n(1/d)κ) B(1/2c,1<2/d)(
√

n(2/d)κ) . . .
...

...
...

...

∇B(1/1c0<1/d)(κ)ν ∇B(1/1c,0<1/d)(
√

n(1/d)κ)ν . . . ∇B(1c/1c,0<1/d)(
√

n(1/d)κ)ν 0 . . .

0 ∇B(1/1c,1<2/d)(
√

n(1/d)κ)ν . . . ∇B(1c/1c,1<2/d)(
√

n(1/d)κ)ν ∇B(1/2c,1<2/d)(
√

n(2/d)κ)ν . . .
...

...
...

...

Ĩ(1/1c)(κ) 0 . . . . . . . . . . . .

0 Ĩ(1/1c)(
√

n(1/d)κ) . . . Ĩ(1
c/1c)(

√
n(1/d)κ) Ĩ(1/2c)(

√
n(2/d)κ) . . .




,

(6.5)

where

B(r/hc,i< j/d)(κ) :=




ϕ
(1/m,h/d,r/hc)
κ

(
x(i< j/d,1/m)

)
. . . ϕ

(m/m,h/d,r/hc)
κ

(
x(i< j/d,1/m)

)
...

. . .
...

ϕ
(1/m,h/d,r/hc)
κ

(
x(i< j/d,m/m)

)
. . . ϕ

(m/m,h/d,r/hc)
κ

(
x(i< j/d,m/m)

)




for either h = i or h = j, and B(r/hc,i< j/d)(κ) = 0 otherwise. Similar definitions apply to

Ĩ(r/hc)(κ) with respect to its interior points and ∇B(r/hc,i< j/d)(κ)ν so that M(κ) contains

many zero blocks, compensating its complex block structure in total. As before, collocation

points are varied column-wise and sources are listed row-wise within M as guiding arrange-

ment. Also, the first block column is linked to v as in (4.34) whereas the other ones are

completely due to w and its different source contour contributions now. Altogether, we are

ready to compute ITEs for piecewise homogeneous media by applying again the modified

MFS to (6.5) as depictedd in Figure 3.5.

For this purpose, we want to examine the unit disc scatterer D again but with two different

inner-component configurations, see [86]. The first one should have completely separated

components and is as such indicated by D◦◦, while the other, D⊚, has a corresponding
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and for D⊚

Γ
(1/3,1/2)
⊚

:= ∂BS

(
(0,0)⊤

)
,

Γ
(1/3,2/2)
⊚

:= ∂B0.4s

(
(0,0)⊤

)
,

Γ
(2/3,1/2)
⊚

:= ∂B0.4S

(
(0,0)⊤

)
,

Γ
(2/3,2/2)
⊚

:= ∂B0.3s

(
(0,0)⊤

)
,

Γ
(3/3,1/1)
⊚

:= ∂B0.3S

(
(0,0)⊤

)
,

with S = 1.5 and s = 0.5. Hence, we can readily distribute both m sources and collocation

points each on corresponding circles equidistantly. The complementing interior points are

picked randomly throughout D. The final modified MFS results for n(1/3) = 4, n(2/3) =

3, n(3/3) = 2 are then shown in Figure 6.3. Our overall conclusion is that for a moderate

number of inner components, i.e. when d is not too large, ITEs for piecewise homogeneous

media can still be computed very accurately with our proposed method.

6.3 The interior transmission problem in 3D

Having studied in detail the modified MFS with its several ITP modeling scenarios in 2D,

we finally address the problem of computing ITEs for bounded D ⊂ R
3. For the sake of

simplicity we confine to the homogeneous acoustic case (4.3) and convince ourselves that

the general approximation-theoretical framework introduced in Section 4.3 applies likewise

for 3D scattering configurations after updating dimension-dependent quantities. For instance,

the fundamental solution Φ3D
κ for the Helmholtz equation with wave number κ 6= 0 which is

radiating in the sense of

lim
r→∞

r
3
2
(
∂rΦ

3D
κ − iκΦ3D

κ

)
= 0

becomes

Φ3D
κ =

1
4π

eiκ|•|

| • | ,

see [25]. Hence, we can directly move forward to numerical aspects of the modified MFS in

3D and discuss the distribution of computational points first. The latter gets more involved

now as ITE approximations proved to be sensitive already in 2D with respect to varying the

distance of source contour to collocation boundary via radial scaling. Since even a further

angular degree of freedom comes into play in 3D, the situation is expected to become only
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Fig. 6.5 Modified MFS applied to the unit ball in 3D with n = 4 for m = 301 (left) and
m = 601 (right) collocation points, respectively. Ill-conditioning artifacts for computing the
smallest singular value start early in comparison with the accuracy of approximate ITEs

which only reveal 3 correct digits for k
(1)
R

= π in both cases.

We conclude that in higher dimensions the modified MFS lacks accuracy already for very

easy test scatterers. Our short excursion is to illustrate the necessity of further research

and potential reconsideration of optimization techniques to make the modified MFS more

attractive for eigenvalue computations in 3D.



Chapter 7

Summary and Outlook

This thesis has provided novel numerical and theoretical insights into the ITP for different

wave type models in two dimensions. The mathematical core is guided by the development,

analysis and verification of the modified MFS which is capable of computing complex-valued

ITEs for (piecewise) homogeneous scatterers. The method has proven to be best-suited for

smooth and convex domains (decomposing into at most few material components) whose

boundaries can be reasonably discretized with a moderate number of collocation points. For

instance, 8 correct eigenvalue digits and often more can be calculated readily with less than

60 boundary points for standard scatterers such as ellipses or kite-shapes, beating thus many

alternative methods with regard to accuracy, complexity and convergence rates in practice.

Throughout, tuning parameters and points have been selected manually according to certain

approved criteria, but could alternatively be optimized within an independent pre-process to

further improve our current results.

Concerning computational challenges, all the issues that we have encountered in the

course of establishing the modified MFS were linked to the well-known ill-posedness of

the underlying MFS ansatz. On the one hand, spurious eigenvalues, which are typical for

discretized compact operator equations, could be easily avoided by our algorithm so that

significantly higher accuracy than for the standard MFS is attained as illustrated for the

related yet easier Dirichlet Laplace eigenproblem. Our derived convergence theory for

approximating ITEs via the modified MFS even shows that the resulting error achieves up to

spectral decay depending on the regularity of the scattering boundary. On the other hand, the

attainable accuracy for relatively large collocation numbers is in practice still limited due to

the growing ill-conditioning of the coefficient matrices and their induced error propagation

within the modified MFS algorithm. In particular, 3D applications or complex scattering

boundaries, especially corners, cannot be treated efficiently yet. According to the uncertainty

principle though, i.e. the incompatible interplay of good convergence rates and blowing-up
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condition numbers in the context of interpolation with radial basis functions, only higher

precision updates may handle this intrinsic subtlety completely upon additional numerical

costs.

From a theoretical point of view, the structure of the ITP is non-standard which is why a

novel approximation framework has been set up in terms of general Trefftz-like trial functions.

As such it also yields a spurious-free basis for other boundary collocation methods and takes

into account the usual distinction on isotropic and anisotropic scattering media. Specific for

the modified MFS, we have shown that the whole eigenvalue spectrum can be detected and

proved a posteriori error estimates as well as convergence rates. A natural next step would be

to extend the introduced method with its theory to absorbing media whose refractive indices

then exhibit a dispersive and complex-valued structure. The latter is an important field of

current research with many open questions.
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