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Abstract

This thesis deals with a novel approach for analyzing and computing interior transmission
eigenvalues of (piecewise) homogeneous media in two dimensions. It is based on approxi-
mating boundary data of respective eigenfunctions by the method of fundamental solutions.
However, since a straightforward implementation would solely exploit ill-conditioned matri-
ces and thus evoke spurious results, a stabilization scheme is incorporated. The combined
method is then studied with a distinction between isotropic and anisotropic materials, and
complemented by novel approximation theory each. Numerical validations complete the

investigations for different wave type scenarios.
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Chapter 1
Motivation and scope of this thesis

Interior transmission eigenvalues (ITEs) are complex-valued quantities which originally
arose in the study of inverse scattering problems, see [58, 35]. Here, the general task is to
characterize the interior of some hidden object through its scattering behavior with incident
waves. While a full reconstruction is computationally expensive, non-linear and ill-posed, see
[25], detecting only the support of the scatterer can be considered in an easier linear fashion,
see [59]. However, those sampling methods then suffer from the fact that wave numbers of
magnitude equal to ITEs, whose discrete spectrum is scatterer-specific, need to be excluded
to avoid the possibility of non-trivial waves with evanescent and thus deficient scattering
response, see [28]. Because of this restrictive phenomenon, it is desired to compute ITEs
with high accuracy yet at preferably low numerical costs, see [26].

On the other hand, ITEs do also contain information about governing material parameters
from an isospectral perspective, see [25, 42, 18]. For instance, fixing the support of the
scatterer, it can be shown that for homogeneous media the smallest real-valued ITE is strictly
monotone with respect to some propagation constant, cf. Section 4.2, while for spherically
symmetric inhomogeneous media the entire spectrum even encodes corresponding profiles
completely, see [28]. Those relations can especially be used in non-destructive testing, see
[19, 48]. ITEs apparently exhibit both a deteriorating and descriptive nature in practice which
merit to be investigated further.

Mathematically, ITEs are non-linear eigenvalues of a modeling forward operator, the
interior transmission problem (ITP), which is given for several types of waves altogether by
a coupled, non-self-adjoint and second-order PDE system. In the easiest case of acoustic
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scattering it reads

Av+k*v=0 inD
Aw+nk*w=0 inD
v=w ondD

avv = avw on (9D .

where n denotes the refractive index as governing material parameter and D is the global
support of n — 1, defining the underlying sonic scatterer. Corresponding ITEs are then
determined as wave numbers k for which non-trivial eigenfunction pairs (v, w) exist. Although
a profound theoretical analysis has been established for their theory over the years, there are
still many open questions, see [33]. Complementing numerical studies might yield new or
even deeper insights for ITEs at that point. Regarding their direct computation, a non-standard
eigenproblem needs to be solved for whose discretization mostly mesh-based methods like
finite element or boundary element methods are currently used due to their robustness and
broad applicability, see [92, 62, 24, 26, 29, 102, 54, 53, 43]. But also more sophisticated
techniques have been developed in the course of ITE research such as aforementioned
sampling methods, see [24], or the inside-outside duality method, see [83, 61, 85]. However,
neither of them achieves satisfactory accuracy for common test scatterers compared to the
workload required which suggests the investigation of simpler approaches, see [26].

For the listed purposes, the method of fundamental solutions (MFS) will be representa-
tively studied in 2D. It is a mesh-free boundary collocation method which was originally
proposed in [69] to approximate functions subject to fulfilling a certain PDE only by linear
combinations of corresponding singularity-translated fundamental solutions. Hence we must
limit the ITP to homogeneous media (or piecewise homogeneous media with a moderate
number of components) which is actually not that far from ITE calculations for arbitrary
inhomogeneous materials thanks to the aforementioned monotonicity relations. Facilitating
thus non-local trial functions with the potential of exponential convergence rates, the still
cautious use of the MFS nowadays comes from the observation that its straightforward
implementation is generally ill-conditioned, see [8]. However, efficient numerical remedies
have been developed simultaneously one of which has been proposed by [13] in the special
context of eigenproblems with excellent results using the method of particular solutions. In
combination with the related MFS, to be called modified MFS then, it will be our inspira-
tional basis for upcoming ITE calculations and novel approximation theory. Taking also
into account that computing resources, including standards for higher precision arithmetics,



have been growing tremendously in the last decades and continue so, this finally motivates to
revive formerly-affected methods.

The overall structure of this thesis is as follows: We continue with an overview of
mathematical concepts in Chapter 2 which is necessary for our subsequent theoretical analysis
of ITEs and introduce in Chapter 3 the modified MFS as our representative numerical method
of investigation. Since the ITP is generally distinguished by whether the associated scattering
material is isotropic or not with respect to penetrable waves, we discuss the modified MFS
for both cases separately in Chapter 4 and 5, respectively. Chapter 6 then extends our
computational framework to further ITP models, including a prospect for 3D applications,
and Chapter 7 finally summarizes the main results of this work. Altogether, it is based on
[66—-68, 86] where the author of this thesis was also corresponding author and which were
published during his doctoral studies.






Chapter 2
Mathematical preliminaries

The following sections of this chapter are designed to provide a compact recap on mathe-
matical tools relevant for the theoretical scope of this thesis that would otherwise be spread
over several textbooks. Concerning later proofs we may readily refer back to selected results
that we are going to discuss here. Apart from the terminology to be introduced, differential
calculus, complex analysis and the language of PDEs are the least required knowledge that
will be built on.

2.1 Basic notation

For having a common starting ground and setting notations, we spend especially this section
to shortly overview some vector and matrix algebra. Except for in combination with Bessel
or Hankel functions, see [1], we follow the convention to use lower indices for components of
multidimensional objects or functions, whereas superscripts in parenthesis refer to sequence
labels and are thus clearly distinguishable from power exponents. Regarding the variety of
possible product-type operations then, we need to keep two cases apart on the basis of index
summation: Those where two factors might be of different size but have compatible adjacent
dimensions, e.g. matrix-vector multiplication, and on the other hand there are scalar products
which are defined for objects from the same set.

Concerning the first kind, we skip any product symbol and confine to matrix-vector and
matrix-matrix multiplications. Embedding vectors according to C? ~ C4*!, we define

d
MV)ij=Y Mi,Vyj,
p=1
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where M € C*¢ and V € C?*¢, We state two important matrix decompositions that will be
crucial for the numerical core of this thesis: for any full-rank matrix M € C¢ *d with ¢ > d
there is a unique QR factorization

M=0QR,

where Q € C*¢ is unitary and R € C?*¢ is upper triangular with positive diagonal elements,
see [91]. The QR decomposition can be used to find an orthonormal basis for the range of M.
Besides, the singular value decomposition divides

M =UxV 2.1)

such that U € C¢*¢ and V € C%*? are unitary and £ € C*¢ is non-negative diagonal, see
[91]. The positive diagonal entries 0 < O, = o <. < 0(®) with e < d are called
singular values and encode the matrix singularity if Gy, & 0, its spectral norm by ¢(¢), and
finally the relative condition number which can be expressed by ol@ / Omin and thus serves as
worst-case measure for numerical error propagation from general matrix manipulations.

For elements from the same argument class V,W € C¢*¢, representing again vectors or
matrices dependent on whether e is equal to 1 or not, respectively, a commutative bilinear
form can additionally be defined. It runs over all indices tuple-wise and will be signified by
the dot symbol “-”, i.e.

d e
vw=Y Y Viw,;=uvw’). (2.2)
i=1j=1

Here, tr(e) abbreviates the trace operator for quadratic matrices with universal place holder
e also used in different argument contexts later, and T denotes matrix transposition. In
the further course of complex-valued calculus, taking real and imaginary parts will be
abbreviated by Re(e) and Im(e), respectively, complex conjugation is expressed by overbars,
i denotes the imaginary unit and arg(e) outputs the complex argument. In order to turn
(2.2) into a positive definite scalar product then, one of the arguments (without loss of
generality the second) needs to be conjugated. Hence we set |V | := [V], := V'V -V as well
as V] =Y, Y51 |Vi,j|- While norms for finite dimensional vector spaces, emphasized
with single bars, are equivalent and thus only a matter of convenience, successful structural
insights for problems in infinite dimensions, such as in function spaces, depend strongly
on the selected topology. Especially Section 2.3 aims at giving an interconnected overview



2.2 Linear and non-linear eigenvalue problems 7

of related concepts. Before, we recall some well-known basics about eigenvalues as being
literally the focus of this thesis.

2.2 Linear and non-linear eigenvalue problems

Eigenvalues k are characteristic numbers which solve the system
M(k)a=0 2.3)

for some eigenvector oo € V\{0}, where M (k) : V — V is a linear operator on a normed
vector space V for each x € C, see [14]. By convention, k denotes a variable eigenvalue
parameter while k the exact solution. Obviously, eigenvalues are interesting both from a
technical point of view since they reduce certain operator-actions into scalar manipulations,
but also from a modeling perspective as their spectrum can reflect resonance states. It might
consist of duplicates of identical k with linear independent eigenvectors ¢ whose span is
referred to as the eigenspace and its dimension as geometric multiplicity.

Most commonly, eigenproblems arise linearly in x, e.g. M(k) = A — xI, with the identity
map I, which is occasionally dropped symbolically, and some spectral endomorphism
AV — V. If V is finite dimensional with dimV = m, it is well-known that the overall count
of eigenvalues corresponding to A including geometric multiplicity is at most m. For compact
self-adjoint operators A equality holds according to the Hilbert-Schmidt theorem for m = o
and there exists a complete orthonormal basis of eigenvectors, see [5]. With the concept
of algebraic multiplicity then, i.e. the stagnating dimension of the kernel for (A —kI)" as
r — oo, it can be shown for m < oo that V again decomposes into the direct sum of associated
generalized eigenspaces. A corresponding decomposition for the case m = oo is generally not
possible and requires more individual structures of the spectral operator involved. However,
many other results from the finite dimensional setting such as the rank—nullity theorem can
still be extended in the functional analytic context of Fredholm operators which abstract
eigenvalue analysis is often built on.

Luckily, linear and non-linear eigenproblems are sometimes not that different from
each other. This comes from the observation that if M is a polynomial in k, (2.3) can be
transformed into linear block form. For instance, if M(x) = Ao+ kA; + K2A, is quadratic,
we can easily verify that k # 0 is a nonlinear eigenvalue of M with eigenvector a € V if and
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ATlA, T 1(1
o Y Y ) =o, (2.4)
—A;'4y 0) Tk\o 1 KAy Arar

provided Ag : V — V is invertible. An analogue substitution pattern applies to higher order

only if

polynomials. For general non-linear eigenproblems, linearization is only possible modulo
truncation errors which then needs to be controlled individually.

2.3 Functions, distributions and shared operations

One of the prior concerns when investigating boundary value problems faces the question
in which sense appearing partial derivatives or assigned boundary data for a given bounded
domain D C R? should be understood. Their meaning is therefore closely connected to
setting a specific target space to which potential solutions are prescribed to belong. As this
thesis focuses on the computation of certain PDE-based eigenvalues via approximation of
corresponding eigenfunctions, we automatically have to deal with more than one class of
elements. We now list systematically the mathematical foundations necessary for the setup
of the ITP and its analysis from the next chapters. Upcoming definitions are taken from [76]
if not stated otherwise and are compressed or adapted to the content we need.

First we introduce classical C’ (D)-spaces, I € Ny, which consist of all functions f: D — C
whose derivatives (as pointwise difference quotient limits) d% f up to order [/ exist and are con-
tinuous. Here, we have used the multi-index power notation abbreviating 9% f = 9" ... 8;‘ d
with o; € Ny for 1 <i <d such that |a|; <. Besides, we set Vf(x) = (91 f(x),...,04f(x))
for the total differential at x = (x1,...,x;) | € D. If all 9% are continuous up to the boundary
(denoted by C'(D)) and the highest order derivatives fulfill additionally that

p 125 =2 0)

x,y€D, e —y[Y
Xy

< o0

for some 0 < y < 1, then we denote the corresponding set of Holder-continuous functions as
ClY(D). In particular, if / = 0 and y = 1, its elements are more commonly known as Lipschitz
functions. At best, f € C! (D) for all / which is referred to as being infinitely smooth and
ephasized by C(D). Overcoming potential regularity difficulties near the boundary then,

one can either reintroduce C*(D) in previous analogy or constrain to functions that have
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compact support within D. For the latter we define the space of test functions
2(D) = {f € C*(D): suppf C D}

and note that they can be trivially extended to all of R? by zero while obviously preserving
global smoothness. One of the main motivations for their consideration stems from the
attempt to assign a calculus of differentiation also to those objects which, as control quantities
in some idealized model problems for example, are not sufficiently regular for the classical
definition, or are not even defined locally in terms of some Lebesgue-measurable function
such as Schwartz distributions. The delta-distribution &, for x € D is one famous instance

and acts like a point evaluation on any test function, i.e.

When endowing Z(D) with the topology of uniform convergence on compact subsets of D,
distributions appear as sequentially-continuous functionals in the dual space Z(D)*. Their
differentiation then enters upon its effect on test functions and is defined as d% : 2(D)* —
2(D)* for f € 2(D)* and ¢ € Z(D) by

%f (@) = (—1)h (%) .

Identifying by abuse of notation any locally Lebesgue-integrable function f with its nat-
urally induced functional in 2(D)*, i.e. ¢ — [}, f(x)®(x)dx (giving indeed a one-to-one
correspondence according to the fundamental theorem of variational calculus), we point out
that distributional derivatives go hand in hand with the classical formula of integration by
parts. Using the duality trick similarly, many other operations for functions can be rigorously
generalized to certain subclasses of distributions, see Chapter 1 of [49]. Those include, for
example, multiplication with smooth functions, convolution defined pointwise by

(Fe9)@) = [ Fa=1)g()dy 2.5)

and extendible to pairs f,g € Z(R?)* one of which has compact support (in the sense that
test functions being supported outside that closed range are evaluated to zero), and the Fourier
transform

FIE) = [ fweEar



10 Mathematical preliminaries

which is likewise feasible for distributions of compact support, but additionally for so-called
tempered distributions . (R¢)* as its invariant class, see [76]. In combination, they yield
back the formula .7 (f x g) = % f.% g conform to the function setting, see Theorem 1.7.6 of
[49].

Coming back to functions from a generalized distributional perspective via the afore-
mentioned embedding, we denote by L?(D) for 1 < p < oo the Banach space of Lebesgue-
measurable functions f such that

1150y = [ P17 de < oo

for p < o whereas the borderline case p = c emerges as || f|| = (p) := esssupp | f| < eo. Local
integrability or boundedness with respect to all compact subsets of D can then be expressed

by Lf (D), respectively. To enable a symmetric interplay with other elements, we confine to

the Hilbert space setting p = 2 in the following which is endowed with the scalar product

(.00 = [ FWar.
According to the Cauchy-Schwarz inequality we can bound

(f:8) 2w < Ifl2pyllgllz ) - (2.6)

If / is some non-negative integer, we introduce similarly Sobolev spaces of corresponding
order by

H'(D):={feL*(D): 9°f € L*(D) V|a|; <1}
whose norm || ® [| () := (e, ®) 1(p) is induced by

(f:@mpy= Y, (0%£,0%8)12p) -

la)<i

Being actually understood as distributional derivatives therein, the regularity assignment
0% f € L*(D) within H'(D) then claims the existence of a unique square-integrable function
which is called weak derivative with overloaded notation d% f. Since the Fourier transform
acts unitary on L?>(R?) via Plancherel’s identity

_ 1 ' —
I AR GETIIL: @7
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and generally turns differentiation into multiplication, i.e. Zd;f (&) =i&.ZF f(€) for 1 <i <
d, there is the equivalent characterization

H'(D)={fip: fe s ®)", [ (1+IER)IFF(E)PdE <o}

as long as there exists a continuous extension operator E : H' (D) — H'(R?). Apparently,
both definitions of H!(D) share some reformulation in terms of L?-controlled integrands but
the advantage of the latter is that it readily applies to all / € R. With that it can be shown that,
additional to H'(D)* ~ H'(D) in terms of (e, ) (p) according to the Riesz representation
theorem, there exists an alternative isometric realization of H'(D)* which is induced by the

(o,0);2 (p)-based duality product

F-8)5-100m0) = Tt o P 6 FR(E)4E. 23)

The above integral resembles Plancherel’s identity without conjugation using
H' (D) :={f e H'(RY) : suppf C D} .

In particular, (2.8) is independent of the extension of g and justifies why taking negative
exponents of Sobolev spaces is associated with passing to their duals, see [17].

The facts listed so far for spaces defined on domains D can be largely adapted to dD as
long as it is sufficiently smooth which we want to specify now. Generally, since manifolds
are locally representable as the graph of a scalar function, smoothness of the boundary is
reflected by the regularity of that function. For realizing a surface measure ds on manifolds in
a differential manner, it is reasonable to request that D is at least a bounded Lipschitz domain
due to Rademacher’s theorem which thus also offers the determination of outer normal
vectors v € ST := {x ¢ R : |x| = 1} almost everywhere along dD. Hence, equivalent
definitions of integrability and H'(dD) for [ > 0 arise via a partition-of-unity pullback to the
Euclidean reference frame in RY~! with > 1 and for [ < 0 by duality again. In the special
case when the boundary is homeomorph to the (d — 1)-dimensional torus, Fourier calculus
and in particular Sobolev spaces can even be treated in a corresponding periodic manner for
which Plancherel’s identity (2.7) then reduces to

1 Bxpzey = Gt L 1ZIE 2.9)

§621171
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and likewise

1
10210201y = g LZFE)P(1+]EP), (2.10)
Hl([072) ) (2717)‘1 lée;*‘

where the Fourier coefficients are now given by

Ff(&) ::/ F(x)e™sdx 2.11)

[07271-)(/—1

see [45]. At last, the overall connection of boundary and interior part of admissible functions
is summarized by the celebrated trace theorem: For a C'~!'!-domain D there is a unique
continuous and right-invertible trace operator

T:H(D) — H*2(9D)
such that 7(f) = fjyp forall f € C=(D), provided 1/2 < s < I. Hence we sometimes write
fiop or just f instead of 7(f) also for Sobolev functions f. Choosing 2 < s <, the results
even extend to 7 : H*(D) — H“’%(aD) X H“’%(aD), where now 7(f) = (fiap, (dvf)jap)-
see Appendix 2 of [79]. The trace operator kernels can be characterized by

Hy(D) := 2(D),,

with the closure taken in the H*(D)-norm which thus extend the assignment of zero Dirichlet
data to Sobolev functions. If s < 1/2, the operator norm of T blows up, but restricting
to functions which respond to some differential operator in divergence form more regular
than corresponding weak derivatives would a priori suggest, duality again yields a proper

definition of traces based on variants of Green’s second identity such as
[ 618800~ g(0)af () dr = /a [($)28(s) ~g(6)0uf ()5, @12)

which is originally valid for smooth functions and likewise for f,g € H*(D) by density
arguments from the next paragraph. Exploiting right-invertibility of the trace operator
with s = 2 to ensure existence of some lifting function g € H>(D) such that ||g|| (D) <

C(llell ) + HangH%(a given g|9p and dyg|yp, we then see with (2.6) that

3 )
H2(dD D)
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130Fl, 50y = S0 [ AF(R)8() — F@AG0E) e < C(If ) + 1A 1200)
8Vg‘(;D:O D
lell 3 =1
HZ(
(2.13)
and
Iy oy = P [ F0)A() ~ AF)e)dr < (Il + 187 o)

81op=0,
lovell 1 =1
H2(3D)

(2.14)

are well-defined provided f,Af € L?(D) and D is a C»' domain, see [29].

In order to close the gap within our overall function-distribution excursion, we want
to point out that Sobolev spaces with their weak derivatives are in fact not far from being
classically differentiable. The famous Sobolev embeddings show that under affine conditions
on l,d,s,y > 0 and for bounded Lipschitz domains D C R it holds that H*(D) c C"¥(D),
whereas density results such as Z(R¢ Jip CH !(D) always persist without restrictions, see
[37]. For our analysis, the transitions between Sobolev spaces themselves with different
exponents will be of major importance because the inclusions H*(D) C H!(D) are always
compact for / < s and unbounded D. This implies that any weakly convergent sequence
{f(’") }meN C H*(D), signified by

f" = fin H'(D)

and which embodies (f, Y s o)~ (f, F) s (p) forall f € H%(D) (or with respect to (2.8)
and f € HS (D)), converges then strongly in H!(D), i.e.

™ = f in H'(D)

or equivalently || f (m) _ f || HI(D) 0. The case [ = s still exhibits weak compactness and
ensures for any bounded sequence { f (’”)}m ey © H'(D) a subsequence that we will not
explicitly relabel such that f (m) fin H (D). As for strong convergence, we want to recall
that weak limits are unique, but the associated sequence norm is only weakly lower semi-
continuous when m — o=. The methodology of weak convergence is thus very convenient
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for passing from bounded approximate solutions of a given linear and non-trivial problem to
some desired limit as long as the latter can be shown to be non-trivial.

At last, we want to mention that all the listed results stated for scalar functions or distri-
butions until here can be adopted to the vector-valued case by interpreting the corresponding
definitions component-wise. The augmented ranges are then, for instance, expressed via
H’(D,(C’), ie. f€ HI(D,(CF) implies f; € HZ(D,(C) for all 1 <i<r, and to keep consistent
to the old notation, we set H'(C?) := H'(C?,C) if r = 1. Depending on whether the output
of product-based operations or definitions have to become a scalar or vector when r > 1, the
ambiguous multiplication so far need to be adjusted according to Section 2.1. With all these
conventions at hand, we are now ready to address more PDE-related aspects towards the ITP.

2.4 Elliptic PDEs and fundamental solutions

In Chapter 1 we have already encountered the acoustic ITP as a representative from a more
general family of modeling systems in focus of this thesis. They have in common that their
distributional forms, i.e. the PDEs for the pairs v and w separately, are linear eigenproblems
with eigenvalue parameter k given by

Ar+%°1 . (2.15)

Here, I denotes the identity in some definite function space to be specified and Ar is some
linear, second order differential operator in divergence form, i.e.

Aru(x) = div(T (Vu(x))) (2.16)

associated with the tensor-based map 7 : C” xd _y ©rxd \where u: D — C' and the outer
divergence div(e) is taken row-wise. As convention, we always skip the trivial specification
of T in the Laplace case Au = div(Vu). The operators Ar are generally assumed to share the
characteristics of strong ellipticity according to our constitutive ITP assumptions later: Ar
is said to be strongly elliptic on D, see [76], if it holds for some uniform positive constant
¢ > 0 that

(&™) (T(ngT)) > c|EPn)*  forallxeD, £ eRandn e C . 2.17)

In the context of scalar PDEs, the addition “strong” is usually dropped because (2.17) actually
states that T is uniformly positive definite with respect to certain rank-one matrices which
are as such unambiguous for r = 1.
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One benefit of strongly elliptic operators is that once Aru exists in some relatively weak
sense, regularity theory for proper spaces like in H'(D,C") ensures that u is as good as
the smoothness of PDE coefficients, the boundary itself and the traces of u allow. An
accompanying a priori estimate for second order systems is therefore typically of the form

lullgrv2(p,cry <€ <|ATM||H1(D,<Cr) + | Bul| . ”|L2(D.(C’)> ; (2.18)

3
H'2(oD,Cr

2

see [76], or, since k*u accounts as a compact perturbation in H' (D) for any u € H'*2(D),

Il <€ (I8 + Dl + 180y 4y o Hlblipe) « 219)

(dD,CT
where C > 0 is a constant and D is a bounded C'*!"!-domain. Further, the last summand
on the right-hand side of (2.18) and (2.19) can even be dropped if « is unique as a solution
subject to the boundary data provided, e.g. Zu = tu in the Dirichlet case. Alternatively,
also other boundary control terms with corresponding norms can be used such as the co-
normal derivative Bu(x) = T (Vu(x))v € H l+3 (dD,C") from the Neumann problem whose
solutions can at most be determined modulo the addition of constants, making ||u(;2(p ¢
in the a priori estimates then unavoidable. The complementing question of existence of
solutions to strongly elliptic system subject to fulfilling given boundary data is generally
linked to the applicability of the Fredholm alternative. While for vanishing Dirichlet data
this is sufficiently assured by (2.17), cf. [76], more complex scenarios, including higher
order differential operators, are completed in virtue of elliptic boundary value problems via
complementing conditions, see [3, 2].

In free space or exterior domains, boundary data at infinity generally do not make sense
as before and are replaced, for instance, by certain radiation conditions for r := |x| — oo to
obtain well-posedness. In this case, existence of solutions can often be handled explicitly in
terms of fundamental solutions exhibiting the prescribed decay properties and which thus
form the most important distribution class for our ITP analysis: Given A7 + k2, @7 i is a
fundamental solution (system), see [81, 51], if it is a distributional solution to

(AT =+ K'ZI)(I)TJ( = —8() .

Existence of @ itself is guaranteed by the Malgrange—Ehrenpreis theorem for constant-
coefficients-PDEs and depending on the symmetry of A7 it can often be expressed as a radial
basis function in C*(C\(—oe,0],C"). For example, in the case d =2, r =1 and Ay = A, it
is well-known, see [96, 72], that a valid choice is @, = iH(gl)(K'| e |)/4, where we have also
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skipped the tensor index and with Hél) being the first Hankel function of order zero, see
[1]. On the one hand, fundamental solutions cannot be globally smooth functions up to the
underlying PDE order due to their singular right-hand-side inhomogeneity per definition. On
the other hand, it is this subtlety which enables the aforementioned direct construction of
particular solutions u to (A7 + k2I)u = f via ®r i * f whenever f € Z(R? C")* is compactly
supported. It should be mentioned that for r > 1 the corresponding fundamental solution
@7« is matrix-valued, so @7 i * f might not be commutative as it is in the scalar case.
However, similar to (2.18), it holds that if f € H! (D, C") for some bounded set D and [ € R,
then @7 * f € H}"2(R?,C"), see Theorem 10.3.1 in [50].

While the latter generates inhomogeneous solutions of (A + &*I) with right-hand side
given by f, the outcome is totally different if the convolution involved is performed on some

(d — 1)-dimensional closed contour I". We will write for f € L*(T',C")
xms (@7 £)(0) i= [ Brale—s)f()ds (220)

and call (2.20) single layer potential, which now solves (A + k21)(®r 4 #r f) = 0 classically
in I = RY\I" and appears mostly in potential theory with the choice I' = dD to study
corresponding homogeneous boundary value problems on D. However, this also comes
along with certain jump conditions across the shared boundary that are harder to handle
numerically than for the choice I' = dQ with Q D D being some open and bounded superset.
In this way singularities from @7, are indeed shifted away from D so that 7 #r f keeps
smooth across @D for all f € L>(I",C"). With the freedom of locating I" and choosing proper
coefficient functions f then, we will try to approximate eigenfunctions of the ITP and give
thus rise to the MFS described in the next chapter.



Chapter 3
The method of fundamental solutions

The MFS is our special representative of boundary approximation methods that we will
analyze in detail for ITE computations in two dimensions. In this chapter we are going to
introduce the standard version, discuss its natural failures in the context of eigenproblems
and present a successful improvement.

3.1 About PDE discretization techniques

Given the task of approximating solutions to a given boundary value problem which will be an
intermediate step of our eigenvalue detection procedure to be presented, there are many ways
to do so. Usually, they have in common that two families of functions (or distributions) are
involved: on the one hand there is the set of trial functions, which are to generate approximate
eigenfunctions and should therefore be chosen as a dense set in the prescribed target space of
the sought solution. On the other hand there are the test elements, which serve to measure
some residual quantity to be minimized by approximate eigenfunctions.

Among the most famous and approved methods is the finite element Galerkin method for
which both sets coincide. Its span is normally generated by easily-constructible functions
like local polynomials that are supported on few adjacent cells of an auxiliary and preferably
fine mesh covering the domain of interest. This quite general but costly formulation makes
this approach applicable for a wide range of numerical PDE applications, especially for the
treatment of inhomogeneous coefficients. Although the relatively high number of degrees of
freedom involved rarely affects the method’s stability in practice due to sparsity of resulting
discretization matrices, it does influence the convergence rate through the global smoothness
incompatibility of finite elements being mostly either non-trivially analytic or identically
zero within each mesh cell. As a consequence, the achievable accuracy of the method’s
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outcome is primarily limited through the discretization complexity to algebraic error decay,
even for regular PDEs or smooth domain samples, see [80].

While finite element methods, as a subclass of Ritz methods, aim to optimize conditions
which are supported on the interior domain such as PDEs via localized trial functions
and thus exhibit correct boundary data already by construction, Trefftz methods go the
other way round and consider superpositions of particular global PDE-solutions instead
whose boundary misfits need to be controlled then in the ordinary terms of collocation,
least-squares or Galerkin projections, see [95]. The advantages of the latter approach are
two-fold: First, it reduces the residual quantity from the interior to the lower-dimensional
boundary of the domain which usually results in less unknowns for the approximation
procedure. Second, the corresponding trial functions can be infinitely smooth and are
therefore expected to reach optimal convergence rates as for general spectral problems, see
[94]. According to conservation of mysery though, the price one typically has to pay is that
the discretization matrices generated by convenient trial elements become dense and severely
ill-conditioned. In our particular case of radial basis functions there is even an uncertainty
principle, see [89], which states that both the attainable error and the condition number for
the approximation procedure cannot be kept small simultaneously. To cope with critical
round-off error amplifications from ill-conditioning then, one could apply regularization
techniques, see [60], or elaborate the choice of a more efficient trial function basis via some
additional pre-process, see [40]. Since we will be interested in solving eigenproblems which
are associated with explicitly filtering degenerate systems, we will make use of the latter
remedy for the MFS later.

3.2 The standard method of fundamental solutions

The MFS, also called charge simulation method [57], is a Trefftz method which goes back to
Kupradze and Aleksidze at the beginning of the 1960s. It was designed to find approximate
solutions to well-posed boundary value problems, see [69], and is a boundary-type collocation
method with translated fundamental solutions as trial functions varied in their characteristic
delta-distribution-singularity outside the domain of interest. As such it can be interpreted as
a discretization of (2.20) according to the following basic setup:

Assume we want to find a numerical solution « to a constant-coefficient-PDE (or to a system
for r > 1) of the form A7u+ x?u = 0 for some non-degenerate and fixed k € C on a bounded,
simply connected domain D C R? such that Zu = f. Here, f is a given (vector) function
on dD which is piecewise smooth to admit reasonable point evaluations. According to
collocation, a classical MFS approximation with rm € N degrees of freedom is based on
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a least-squares optimization for matching boundary data which requires m representative
collocation points, labeled relative to their total count according to

{x“/m),...,x(m/m)} caD,

and n > m PDE-fulfilling trial functions derived from corresponding fundamental solutions
via
X (p}{i")(x) = CIDT,K(xfsW")) eC™r. 3.1

Here, {s(l/ "), ... ,s("/ ")} C D¢ are n distinct so-called sources or charge points, in association
with the delta peaks from ®7 , whose efficient locations are worth some discussion as being
still a partially open problem nowadays, see [6]: The main idea behind their introduction as
specified so far is on the one hand the easy generation of linear independent trial functions
(p;/ ,/C") (x) just by varying sU/") and on the other hand to avoid artificial singularities within
the domain of interest that would otherwise be inherited from any resulting approximate
solution. Being thus justified as auxiliary instances for the solution procedure than intrinsic
to the boundary value problem itself, {s(l/ noL s ”)} can either be interpreted as n further
degrees of freedom in the non-linear process of minimizing the boundary collocation defect,
see [38], or, as we will do thanks to many concrete guidelines, cf. [6, 10, 57], they are to be
preselected manually for each m. For the latter one usually fixes some Jordan curve I as
admissible distribution range independent of m so that I' = 9dQ as well as D C Q holds, see
Figure 3.1. Tt is thus ensured that ' dD = 0, in particular (p;J L") € C*(D,C"), and that any
linear combination of our singularity-free trial functions indeed resembles the Riemann-sum-
version of (2.20), see Lemma 6. The latter is the starting point of numerous discretization
techniques for boundary integral equations such as the boundary element method, see [63, 62]
in the ITP context. Although looking similar, a clear advantage and difference of the MFS is
that it is mesh-free and avoids numerical evaluation of singular integrals. Moreover, the fact
that MFS convergence rates even slow down when I approaches dD, see [10, 93, 74], finally
hints that independent studies are required.

To continue with the MFS based on the above assumptions, at each approximation step m
we specify n = m sources for (3.1)

{s(l/m),...7s(m/m)}cl"
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Fig. 3.1 Exemplary MFS configuration for some D C RR? with sampled collocation points
xU/m) € 9D and sources s\//") e T along the circular boundary of Q.

and aim to solve the linear system of equations

m

Y, Byl ()l = p(x@m)y 1 <i<m, (3.2)
J=1
where o := (a(l/ ’"), AU all/ ’"))T € C™ lists the coefficients (or coefficient vectors) to be

determined for our numerical solution

W (x) =Y @l (x)alilm) (3.3)
=

Accordingly, the (block) coefficient matrix for (3.2) with Dirichlet boundary data reads

pp” (/m) L gl (x(1/m)
Br (k) := : : ; (34

1 U
(P7(~’ li‘m) (x(m/m)) .. (p,}j;/m) (x(m/m))
while for Neumann problems it becomes

T<V(p7("1,ém)(-x(1/m)))v . T(V(p§!7n’({nl)(x(l/’n)))v
E 5 . (39

T (V(p}f ,ﬁ’") (xlm/ ’">)) v ... T (V(pg':(/m) (x0m/ ’"))) %

T(VBr(x))v :=
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where Br(x),T(VBr(x))v € C™™"™" are designed in the style of (2.3). In the Laplace case,
we may skip the trivial tensor index again and simply write B(k) or VB(K)V, respectively.
Some selected analysis results for MFS applications with f # 0 can be found in [17, 10].
The special case of eigenproblems, i.e. f = 0 and degenerate k, is usually a bit trickier since
the trivial solution & = 0 turns out to spoil the computation procedure which will therefore
be discussed in more detail in the next section.

3.3 The standard method of fundamental solutions applied

to eigenproblems

Having derived the implementation for the standard MFS in the last section, we want to
focus now on how to compute eigenvalues with it. We confine first to the scalar Dirichlet
eigenproblem (r = 1) for the sake of simple presentation since the adaption to the ITP case
will be quite straightforward once we have set an accompanying approximation theory. We
call k > 0 a Dirichlet eigenvalue for the Laplace operator (which has a purely real spectrum
as being self-adjoint) if there exists a non-trivial solution u to

Au+ku=0 inD (3.6)
u=0 onodD. 3.7

Our MFS matrix from (3.4) then formally becomes in analogy to (2.3)

H (sclt/m) —sUm)) g (w1 — sy 1) 0

: - : : , (3.8)
Hél) (K}x(m/m) _ s(1/m) |) Hél) (K.‘x(m/m) _ g(m/m) D o (m/m) 0

where the trial functions (3.1) are already expressed by @, = iHél) (x| ®])/4 modulo pre-
factors and which are holomorphic with respect to k in the branch C\(—e,0]. Note
that although the original eigenproblem (3.6) is linear in k2, the resulting MFS system
turns non-linear. The total 2m computational points are without further specification
{x(l/’")7 e ,x<’"/m)} C dD and {s(l/’”), e ,s<’"/m)} C I for now. We are interested in finding
those k = k(™ in (3.8) such that (3.6) is solved approximately for some non-trivial MFS
candidate u(™ according to (3.3). Approximately means here that we cannot expect in
general for all tuples of source and collocation points u™ to vanish identically along all
xU/™) but we can at least hope that these boundary misfit samples become altogether close
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Fig. 3.2 Declining error behavior for the nearest eigenvalue output k(") of Beyn’s algorithm
approximating the first Dirichlet eigenvalue kD of the unit disc.

to zero for k(™) near exact eigenvalues, or in other words that the right hand side of (3.8) can
be made small compared to the coefficient norm of @ € C™.

An elegant way to compute those non-linear eigenvalues k for which the quadratic matrix
B(x) in (3.8) becomes numerically singular is given by Beyn’s algorithm, see [14]. It is
based on a generalization of the residue theorem applied to matrix-valued functions that
are holomorphic in each component. In this way Beyn’s algorithm is capable of finding
all degenerating x of B(k), or equivalently approximate eigenvalue candidates for (3.6)
including multiplicities, within a prescribed search region R C C. Implemented similar as in
Section 3.1 of [67], we aim to measure the absolute deviation of the nearest output kM of
Beyn’s algorithm from the smallest eigenvalue k(D of the unit disc D = B, (0) for different
m. For this comparison, we note that k(!) < k() < ... can easily be computed analytically:
separation of variables in polar coordinates (r, @) € (0,1) x [0,27) leads to the eigenfunction
expansion, see [30],

=

u(r, @) = aJo(kr) + Y J,(kr) (a'”) cos(p) + 6P sin(pg)) | (3.9)
p=1

where J,, denotes the p-th Bessel function of the first kind, see [1], and a(o),a(p),b(”) eC
with p € N are the unknown coefficients. The boundary condition in (3.6) then becomes
u(1,¢)=0forall 0 < ¢ <2 and orthogonality of the trigonometric factors yields J, (k) =0
whenever a(P) # 0 or b() £ 0. Thus, the Dirichlet spectrum for the unit disc coincides with
the roots of J, whose smallest is found to be k() =2.404825557695772.... for p=0. Figure
3.2 shows that for moderate m the error of k(" first decays very fast to a minimum above
machine precision. Afterwards, it suddenly tends to deteriorate (except for one outlier) at



3.3 The standard method of fundamental solutions applied to eigenproblems 23

0.6 0.6
0.4} 8 04
0.2 0.2
5 5
\._ET 0 E 0
-0.2 -0.2
—0.4 —0.4
0.6 0.6
1.8 2 22 24 26 28 3 18 2 22 24 26 28 3
Re(k) Re(k)

Fig. 3.3 Spurious output from Beyn’s algorithm for m = 20 (left) and m = 35 (right) within
Bos (kM) C C as eigenvalue search region .

m = 23 and any further increase of collocation points only spoils the approximation process.
What is going wrong?

A direct look at the output of Beyn’s algorithm in Figure 3.3 reveals that with the
addition of more and more collocation points the total number of numerical eigenvalue
candidates grows within any localized region R of the complex plane. Knowing all k() due
to our independent root calculations via Bessel functions, we can conclude that spurious
eigenvalues arise if m is critically large. To understand their origin heuristically, we go back
to (2.20) which is our associated boundary integral of convolution type that we think to be
discretized by the MFS. Because of dDNT # 0, @ *r f contains effectively a smooth kernel
with respect to dD and can thus be interpreted, after restriction, as the L?(dD)-outcome of a
compact operator acting on coefficient functions f € L*(I'). In this spirit the associated MFS
boundary matrix B(k) is to reflect properties of general compact operators for sufficiently
large m one of which is the accumulation of singular values around zero, see [25]. In other
words, for every k there exists a sequence of coefficient functions { f (’")} C L?(T") which are
without restriction scaled to unit norm such that ||®; *|r Fm) | 12ap) — 0- BY discretization,
we then also expect the smallest singular values of B(x) to approach zero for m — oo for all
K, turning it thus numerically singular everywhere. Beyn’s algorithm would finally detect
both the desired approximations for exact eigenvalues k() with their naturally evanescent
boundary defects as well as samples of indistinguishably spurious eigenvalues arising from
the underlying, ill-posed eigenproblem formulation by compact operators.
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3.4 The modified method of fundamental solutions for han-

dling eigenproblems

It seems that the MFS in its standard form is not well-suited for the treatment of eigenprob-
lems and we seek for an extension that remedies the aforementioned pollution problem. In
short, eigenvalue differentiation based on trace information of approximate eigenfunction
candidates has proven to be ill-posed, hence taking additionally their interior behavior into
account might turn out beneficial. With that in mind, the main difference between spurious
and real Dirichlet eigenvalues will emerge, from a trial function perspective, in the norm
ratio of boundary to interior which is either bounded from below or goes down to zero for
eigenfunctions, respectively. More precisely, the asserted bound associated with spurious
eigenvalues comes heuristically from (2.19) and the fact that MFS trial functions u perfectly
fulfill the PDE condition from the eigenproblem by definition. Since k is non-degenerate
when being spurious, (2.19) reduces to

Ll
Cep ~ |l gre2py

H'*3 (9D)

)

where the left-hand side depends only on k and D. With a more elaborate derivation for
self-adjoint operators, see [70, 10] for the Laplacian treatment, one can get rid of higher
order fractional Sobolev norms to deal exclusively with more practical L2-norms and the

k-dependent lower bound can even be specified as

1 k=] lall2op)
— min ~ >
Cp teN  [k(O)] 4l 2y

(3.10)

with some pure domain constant Cp > 0 now. In particular, note that the right-hand side can
only vanish if k approaches some k(*). In this way a clear eigenvalue filter is indicated in
terms of computable quantities that combine to avoid the accumulation problem around zero
seen in the last section. Inequality (3.10) will play a model role for our ITE analysis as it
directly relates the boundary misfit of PDE-fulfilling trial functions with the deviation from
any nearby eigenvalue k. It also shows that the main failure of the standard MFS originates
from the undesired approximation of the zero function both on dD and in D whenever
spurious eigenvalues are detected. What the MFS community usually does in the context
of eigenproblems, see for instance [7], is to incorporate one inner indicator point X € D on
which the eigenfunction u is assumed not to vanish. By a scaling argument one can then
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Fig. 3.4 Comparison of residuals with respect to optimal & from (3.11), evaluated at different
interior points X within the unit disc D for m = 20 source and collocation points each: On
the left we choose X = (0.8,0) " whereas on the right we take X, = (k<1)/k<3) ,0) " The latter
obviously misses the dip around k®) since any of its eigenfunctions fulfills u(S)()?*) =0
according to (3.9) and thus fails to fulfill the normalization constraint within the least-squares
procedure.

demand u(X) = 1 so that the overdetermined system to be solved now reads

Ho(l)(K|x(l/m)_S(l/m)|) H(gl)(K‘x(l/m)_s(m/m)’) U 0

e —om) e s [ o)

O (el s0m)) O (kR st |
(3.11)

which is to be understood in a least-squares sense. Although mostly working well in practice,
problems still arise if X is accidentally chosen as a root of an exact eigenfunction. Figure 3.4
confirms that corresponding eigenvalues would not even be detected any more when solving
(3.11) and therefore lead to incomplete results. Also, we want to recall that it is actually
the full L?(D)-norm instead of only a single point evaluation which controls the eigenvalue
approximation via the denominator in (3.10). Reflecting this consistently will become crucial
in the non-self-adjoint ITP case, see Theorem 1.

From this point of view it becomes desirable to attach more than one representative
inner point to the MFS boundary matrices B to better align the norm discrepancy as well as
lower the chance of hitting inadmissible zero-level-contours. Obtained via scaling before,
the individual yet unknown inner structure of any eigenfunction now hinders some direct
normalization assignment on the right-hand side of (3.11) for more than one interior point
X. Luckily, Betcke and Trefethen proposed in [13] another elegant way to still implement
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this idea which they presented within the framework of the method of particular solutions, a
related boundary collocation technique. It is based on a gimmick of the QR factorization and
therefore also applicable to the MFS case which we will describe in the following:

First, we select /i € N interior points {x{!/™ ... ¥("/™} which are to exhaust the
domain D with two possible strategies. Namely, their locations and total number can be
chosen either dynamically proportional to m as explicit degrees of freedom within the MFS
routine, or sufficiently large and fixed in the sense of unchanged quadrature points to better
resemble the L?(D)-norm of superposed trial functions within (3.10) at each step m. Hence,
we wish to choose {55(1/ @, el ,)?(’7’/ ﬁ)} sufficiently dense to hit non-zero niveau lines for
every k € C. Then, the MFS matrix (3.8) shall again be extended by the information of trial
functions at those interior points which defines

H(()l)(x|)?(l/rﬁ) fs(l/m>|) Hél)(K|:€(l/’ﬁ> ﬂ(m/m>|)
1x) = : : e cmm,

Concatenating both, we arrive at the so-called modified MFS matrix

Hél)(,(’x(l/m)_s(l/m)‘) Hél)(K’x(l/m)_s(m/m)‘)
5 Y (/) 1 B (i onim) _ gonfm)
M(k) B(x)\ _ | Hy (rc|x sUm) o Hy Y (k|x s(m/m)|)
](K) H(§1>(K|)/c\(l/’ﬁ)fs(l/m)|) Hél)(KpC\(l/%)fs(m/m)D )
HY ([gm) —g@/m)|) - HSD (e[ R0/ — sm/m)|)
(3.12)

which we are still left to turn into a filter against spurious eigenvalues similar to (3.11).
However, if m > 1, the lifting ‘1’-assignment from the last row would have to be formally
replaced by an entire unit vector with unknown orientation. Therefore, instead of imposing a
concrete normalization condition on the right-hand side, the idea is now to already normalize
M(x) properly. This can be easily realized by a QR decomposition of the modified MFS
matrix whose unitary factor can then again be divided into a boundary and interior part
according to

M(x) = Q(K)R(x) = (gf((,’j))) R(x) .
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Fig. 3.5 Numerical steps within the modified MFS algorithm with input m and approximate
eigenvalue output k(")

where R(k),Qp(k) € C"™ and Q;(x) € C™™. The crucial observation now is that the
ranges of M(x) and Q(x) are the same since R(k) is invertible by rank conservation, in
particular the ranges of Qp(k) and B(k) coincide. So we may replace the standard MFS
matrix B(x) in (3.8) by Qp(k) without changing the non-trivial solvability of that system.
Being thus mathematically equivalent, only the latter reformulation embodies the demanded
pollution filter though: assume there is k € C and € C™ with |B| = 1 such that Qp(k) is
approximately singular, i.e. |Qp(x)B| ~ 0. Since orthogonalization corresponds to a change
of basis, we can find a linear combination of MFS trial functions, denoted by «™ with actual
coefficient vector a@ = R(x)~! 8, whose sampled boundary misfit is given by

) (x(1/m))
: =B(x)a = Q0p(x)p .
M(m) (x(m/m))

The benefit of working with Qp(x) instead of B(k) now is that having confined to a fixed
vector length |B| = 1 gives us direct control over u™)"s interior contribution via

1 =Q(x)BI* = |2p(K)BI* +|Qi(x)BI*

) (i) 2y R | () (/)Y 2
—;|u (x )| +;|u (x )| (3.13)

~
~

|u(m) (3(1/@)) |2 )

™

I

l

For the first equality we used explicitly that Q is unitary which links the transformed
coefficient norm of 3 in a norm-preserving way to the boundary plus interior collocation
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Fig. 3.6 Geometric error decay reaching machine precision for the modified MFS computing
x{1) as approximation for the first Dirichlet eigenvalue k(") of the unit disc.

contribution of its associated trial function «(™). This is what we thought of before by shifting
the normalization condition from the right-hand side of (3.11) into the final system matrix
Q(x). The last estimate then formalizes why spurious eigenvalues are not detected any
more by approximate solutions of |Qp(x)B| ~ 0 which we are left to turn into a concrete
minimization procedure for k: the closer it is to a real eigenvalue, the more the interior
(boundary) part of optimal trial functions should approach unity (zero) in norms. Thus the
trivial solution u(™ = 0 cannot be generated any more numerically. Hence, we choose the
minimal singular value G,,;,(x) of Qp(k) as a measure for how small the boundary misfit
can be made at best for fixed k. The objective of interest for the non-linear eigenproblem
based on the MFS then becomes

K > Opmin(K)

= pedhin,_, 1C8(K)B] -
The entire algorithm for establishing and minimizing K — G,,i»(K), cf. Figure 3.5, will
be referred to as modified MFS in the spirit of [13] and we call those k = ("), giving
sufficiently small values Gy, (K(’”)) or its roots, approximate eigenvalues. As before, their
superscript indicates the degrees of freedom within the boundary collocation process and we
can optionally add a further one as the eigenvalue’s (or the eigenfunction’s) order label &)
according to (3.10), i.e.

|llm k)] Jllm) — @) ™| 2oy J/mID]| Qs () B
min . = <Cp ~Cp .
JjeN |k kO] [JaaCEm) HLZ(D) /m[aD]| 0 (kEm)B|
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Fig. 3.7 Effect of single precision (left) and double precision (right) arithmetics on the
modified MFS illustrated exemplarily for the unit disc D with m = 25 collocation and source
points each.

Here, |D| and |dD| denote the measure within the Riemann-sum-versions of corresponding
L*-norms, respectively. Basically, these informal identifications justify the modified MFS
when disregarding discretization errors for m and i large. Figure 3.6 shows an extract of
the convergence history for our canonical example D = B1(0) and k(D) which proves great
success of the proposed method.

Unlike the choice and discretization of I, varying /1 and corresponding point locations
do not show any significant impact on the final modified MFS outcome, so we can readily fix
some random distribution for 7 = 10, for instance. Concerning the computation of k") at
last, we note that Beyn’s algorithm does not apply any more because the unitary part Q(x)
of any matrix-valued function can only be holomorphic component-wise if it is constant.
This can be seen by applying Cauchy’s integral formula column-wise in combination with
the triangle inequality for integrals. Nevertheless, k") can still be computed efficiently by
standard yet derivative-free minimization techniques from non-linear optimization such as
the Nelder-Mead simplex method, see [98]. Altogether, due to its convincing results and
close consistency with (3.10), we investigate the modified MFS as the method of choice for
the approximation of ITEs in the remaining scope of this thesis .

A last word should be noted about conditioning, however. Although having introduced
some kind of regularization for the MFS in the context of eigenproblems through the QR-
extension compared to (3.8), this does not imply that its implementation in finite arithmetics
will yield unconditionally good ITE results. The problem is that the robustness of the
remedying orthogonalization depends on the condition number of the underlying modified
MFS matrix, see [55]. The latter was seen to grow with the collocation number until it
becomes severely ill-conditioned, in particular no stable algorithm around could compensate
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a corresponding loss of accuracy upon a critical threshold for m. At least the determination
of singular values as second numerical ingredient within the modified MFS is perfectly
conditioned, cf. [90]. Altogether, our ITP algorithm will be expected beneficial especially
for quite regular scatterers whose boundary can be approximately represented by a moderate
number of collocation points already. Otherwise, higher precision arithmetics will be needed
whose error propagation effects for single and double precision standards are exemplarily
displayed in Figure 3.7, respectively. A detailed analysis for exact ITE convergence rates
will be provided in Section 4.3.3 to have a measure at hand which decay to achieve at best in
practice.



Chapter 4

Computing interior transmission
eigenvalues of isotropic and
homogeneous media

The two-dimensional acoustic ITP for isotropic and homogeneous media serves as our model
problem for ITE analysis and will therefore be discussed most elaborately. In this chapter
we recall different aspects of this particular eigenproblem and develop novel theory for ITE
approximations in the spirit of the modified MFS from Section 3.4 for which we then provide
numerical results as well as an accompanying convergence analysis. Since most of these
findings have already been addressed in [67], whose proof techniques were improved in [68],

we will occasionally recycle passages from both without explicit citation details.

4.1 Mathematical framework

The ITP arises as a special case of the more general transmission problem. Modeling for
instance acoustics in ideal fluids, i.e. isotropic media with vanishing shear modulus ¢ — 0 in
(6.1), sound propagation obeys a reduced elastic wave equation of Helmholtz type for the
hydrostatic pressure p = —tr(c) /2, see [39]: Assume we are given the spatial part v: R> — C
of some time-harmonic wave p(x,) = e ~®'3(x) which travels at frequency ® > 0 along a
fixed plane in 3D. We think of the latter as R? for simplicity. When at some point within
there is a transition of different media, let us say between a uniform background material and
some inhomogeneity whose support is mathematically represented by a simply connected,
bounded domain D C R? (to be understood as cross-sections of some planar-symmetric
object in 3D accordingly), scattering effects occur as superposition of local reflections and
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refracted transmission. The resulting total wave w : R?> — C is then characterized by the
aforementioned PDE, see [25],

AW+ K2 aw =0 inR>. 4.1

Here, 71 : R? — R denotes the global dispersion-free index of refraction which could also
be complex-valued when including absorption effects, but measures for our purposes just the
ratio of wave speeds with respect to propagation in the background medium. Hence 7jpc = 1
and the scatterer D itself, that we assume to be (piecewise) homogeneous throughout this
thesis, is distinguished from its exterior by n := n|p = const # 1. We further encounter the
wave number x of upcoming main interest and w = v — u that is interpreted as the perturbation
of v, solving the Helmholtz equation entirely with respect to k in absence of the interfering
scatterer, by some scattered wave u to be determined. Finally, in order to model the intuition
of u being outgoing as excited by D, the 2D Sommerfeld radiation condition

lim /7 (0, — ikii) = 0 , 4.2)

is imposed which is understood uniformly in the angular direction of the argument. It is then
well known that the direct scattering problem of finding w € H/ .(R?) for (4.1) such that i is
radiating in the sense of (4.2) given v is uniquely solvable, see [28].

We are particularly interested in the possibility when w|pe = v|pe. This implicates u €
Hg(D) by a bootstrap argument and embodies the phenomenon that D becomes invisible for
the pair (v, w), i.e. there is no exterior-wave difference between the scatterer being present or
not. A necessary condition for this to happen would be the solvability of the ITP: Determine
k € C\{0} and v,w € L*(D) such that u := v —w € HZ(D) is non-trivial and which solve

Av+ky=0 inD
Aw+nk*w=0 inD

(4.3)
v=w ondD
avv = avW on aD
in a distributional sense. Note we may recover
Au+ nk? Au+k?
p— DU KU and W Jutiu (4.4)

(1—n)k? (1—n)k?
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which are well-defined and conclude that u is the actual unknown to be determined via the
polynomial-type eigenproblem

(A+nk*)(A+E)u=0. (4.5)

The intuitive attempt of interpreting (4.3) as a coupled second order system in the usual
H'(D)-manner would result in a non-compact perturbation of a coercive operator and thus
inhibit the application of Fredholm theory, see [25]. In particular, the ITP is non-elliptic
and ITEs k are naturally relaxed to fulfill the PDE requirements for some eigenfunction pair
(v,w) in a distributional sense. Note that their existence, however, does generally not imply
w to be extendible to all of R? as exterior Helmholtz solution #w which then spoils our former
interpretation of being a non-scattering incident field for (4.1). Indeed, in [16] the authors
even showed that regions D with rectangular corners always scatter despite the existence of
infinitely many ITEs.

Apart from their elaborate interpretation, the study of ITEs itself is also highly non-
standard as already indicated by the subtle choice of eigenfunction spaces. It is further
strengthened by the fact that the spectral operator to (4.5) after substitution in linear form
according to (2.4) is non-self-adjoint and thus allows for complex-valued eigenvalues, too.
When to be distinguished, real-valued ITEs will be denoted by kg. We devote the next section
to provide an overview over mathematical properties of ITEs.

4.2 State-of-the-art facts about interior transmission eigen-

values

There are many things that are already known about ITEs for general isotropic media as will
be listed below, but also a lot of questions that are still open. It is the huge mathematical
variety of the refractive index n, especially for generally inhomogeneous media, that restricts
certain results. While regularity assumptions on n can often be weakened up to L (D) via the
Fredholm approach, its differentiation within D from unity being the distinguished exterior
index makes more trouble as already indicated by (4.4). A feasible constraint is often found
by imposing Re(n) — 1 to be uniformly bounded away from zero with no sign change. One
of the first successful relaxation attempts was then the inclusion of material voids in the
scatterer, i.e. open subsets of D on which 7 is identically one, but showed that already a
different functional framework is necessary, see [23]. Some recent developments concerning
n > const > 0 being infinitely smooth can be found in [87] using semi-classical analysis. The
case of n — 1 changing sign more unconditionally is rather unexplored as well as the analysis
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of absorbing media, see [33], whose refractive index admits a complex-valued dispersion
relation of the form n(x) = nj(x) + inz(x)/k with its non-trivial imaginary parts damping
former time-harmonic waves. Yet it is known for the latter that if n; > 0 and either n, > 0 or
ny < 0 in some open subregion of D, real-valued ITEs do not exist, cf. Theorem 3.3 of [25].

The history of studying ITEs started in the 1980s and focused primarily on proving
existence and discreteness to estimate the practical consequences of their critical nature
within sampling methods from inverse scattering, see [36] for an early survey. Showing
that the spectrum is at most countable without finite accumulation points could be shown
relatively straightforward via Fredholm theory, see [31]. Further, the algebraic multiplicity is
finite each and corresponding generalized eigenspaces form a complete set in L2(D) as found
out recently, cf. [15]. Unlike showing discreteness, it took about two decades to prove for
the first time that infinitely many real-valued eigenvalues in the case infpn > 1 or suppn < 1
do exist, cf. [27, 82]. A corresponding result covering the complex-valued spectrum is still
open except for in combination with selected scatterers such as the unit disc which then
enables the construction of explicit solutions, see [34]. However, all ITEs k are known to
fulfill Re(k) > Im(k) for n > 0, see [21], and are limited to lie in an arbitrary small strip
modulo finitely many exceptions about the real axis, see [97].

Over the time, also the focus as direct sources of information for D has attracted the
analysis of ITEs. Similar to the famous paper “Can one hear the shape of a drum?”, see
[56], but confining to variable indices of refraction with fixed support D in the ITP context, a
corresponding positive answer could be obtained so far for the inverse spectral problem of
spherically stratified media, see [25]. As the whole complex spectrum must be taken into
account then, this again shows that imaginary structures of ITEs are important to understand.
The same might also hold true for shape optimizations with respect to eigenvalues that
are minimal subject to scatterers of fixed area and constant n. Here, numerical studies of
Kleefeld, see [64], show that k(‘), defined as the complex-valued ITE of smallest magnitude,
attains a relative minimum for the unit disc among other sampled scatterers with the same
area. The smallest real-valued ITE kﬁg) = kIg) (n,D) is even more characteristic because it
determines n = const uniquely for fixed D as long as n > 1 or n < 1 is known in advance, see
[28]. Besides, kﬁ{l ) obeys a monotonicity principle for ITEs of inhomogeneous media in terms
of homogeneous ones: Given three scatterers D, C D C D*, it holds for 1 < n, :=infpn
with n* := suppn that

K, 0%) <k (n,0) <k (n.,D.) | (4.6)
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whereas for n* < 1 the corresponding inequality reads
KD (n,,0%) <k (n,0) <k (n*,D.) . 4.7)

Therefore, knowing the spectrum of the ITP with constant index of refraction can help
locating eigenvalues in the variable coefficient case.

4.3 Boundary approximation theory for interior transmis-

sion eigenvalues

In this section we present a novel approximation framework for the computation of ITEs
in the isotropic and homogeneous case. It formalizes the concept of the modified MFS
from Section 3.4 for the ITP in Sobolev spaces as precursor for numerical implementations
afterwards.

4.3.1 A general trial function ansatz

As we have already seen in Chapter 3, there is a direct connection between eigenvalue
and eigenfunction approximations in the case of self-adjoint eigenproblems. Our aim
is a corresponding result for ITEs which, however, requires a different derivation since
decomposition properties like the existence of an orthonormal eigenfunction basis are not
provided for non-self-adjoint operators any more, see [41]. Therefore, we first consider
quite general Trefftz-like trial functions for approximating v and w in (4.3), respectively, and
exploit concrete properties of fundamental solutions in the next subsection. Since 0 < n # 1
is constant, the ITP is turned into a coupled system of Helmholtz equations which can in
particular be treated with an MFS ansatz. In order to allow for convenient conversions
from interior to boundary data of trial functions via trace theorems, cf. (2.13) and (2.14),
we assume D to be of class C*! if not stated otherwise but focus on the effects of domain
regularity towards eigenvalue approximations in the numerical part later.

We start our analysis with setting a relaxed trial function space of Trefftz kind for
approximate solutions of (4.3) by

v= U U,

O<arg(x)<F
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where for variable ¥ € C\{0} and fixed index of refraction n > 0
U(k):={(5,w) €C*(D)xC*(D): Av+x*¥=0, Aw+nx*w=0}.

The reduced regime for ¥ emerges from the aforementioned fact that all ITEs k fulfill
Re(k) > Im(k) in combination with the simple observation that k, —k, k, —k, are ITEs at once
one of which lies in the first quadrant of the complex plane. Consistent with the MFS, any
candidate pair (v,w) in U(x) is sufficiently smooth to enable collocation procedures, fulfills
the required PDE conditions in the interior and it is the remaining choice of the wave number
which determines in how far boundary data match the ITP. As for the Dirichlet eigenproblem
(3.6), boundary errors of trial functions should only be considered small if the scale-invariant
ratio of corresponding trace and interior norm is so. Both existence and location bounds
for some exact Laplace eigenvalue could then be deduced via inequality (3.10) and thus
established the strategy for the modified MFS in the self-adjoint case. For the ITP we need
to divide a corresponding result into two consecutive steps and show first how ITEs can be
detected within an indefinite process. The main idea is again that the normalized boundary
data are bounded from below by the wave-number-dependent constant 1/Cy > 0 according
to the a priori estimate

912200 + 191l 2y < C <|f”H%<aD) + |§|H%<am> ’
when solving

AV+Kk3v=0 inD
AW +nk*w=0 inD

vV—w=f ondD
o(v—w)=g ondD
for x # k, see [25]. The latter system reflects actual trial function states from U for which

we then investigate Kk — k.

Theorem 1. Assume that the sequence {(v('"),w(’"), K(’"))} C U x C fulfills for some

meN
constant 1 < C < oo the following conditions:

(i) eigenvalue convergence: k"™ — k # 0 such that 0 < arg(k) < T,

(ii) uniform interior bound: é < (Hv(’”) HiZ(D) + Hw(’") HiZ(D)) < C form large enough,
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(iii) vanishing boundary misfit: (Hv(’") —wm) HH%(aD) + Hav (v(’”) — w(m)) HH%@D)) =0
when m — oo .
Then, the limit k from (i) is an ITE and a subsequence of { (v(m)7w(m>) }mEN converges

weakly in L*(D) x L*(D) to some eigenfunction pair (v,w).

Proof. By rescaling { (v("™),w(™) | —
ity that C = 1 and aim to apply weak compactness in order to construct a solution candidate

if necessary, we can assume without loss of general-

that will then indeed meet all the required ITE criteria. By assumption (i) we know modulo
the extraction of a subsequence that v("”) — v and w(™) — w in L>(D) which implies with (i)
that (v,w) € L?(D) x L*(D) fulfills the interior conditions of the ITP according to

AQ +K20)dx = li /(’”)A M) 2 ) dx
@0 +i2g)de= tim [ v(ag-+ (x) )

=1 (m) (m))2,(m) -
”lll_r>nm' D(Av + (K ) v )(pdx 0
for any test function ¢ € Z(D). Analogue calculus applies to w. In order to prove that (v —w)
has the correct ITP boundary data, it suffices to show that the differences (v(”’) — w<m>) are
bounded in H?(D) and thus a subsequence is weakly convergent. This would then imply by
continuity of the trace operator 7 : H*(D) — H 3 (dD) and (iif) that

0= Jim (7 1) 3 = B (O )

= (T(vf W),f)

3
H2 (D)

forall fe H 3 (dD), i.e. T(v—w) = 0, with a similar calculation for the normal derivative.
For deducing the uniform H?(D)-bound with respect to m, we note that (v(m) — w(m)) solves
the inhomogeneous Helmholtz equation

AW =) 4 () (1) — M) = (1 =)™ inD,

so elliptic estimates like (2.18) tell us that

9 =gy < € (I = gy [ )

It remains to show that (v,w) is non-trivial. For this we recall that the embedding
H?(D) < L*(D) is compact which implies (v(’") - w(’”)) — (v—w) strongly in L*(D).
Apparently, (v,w) # 0if [[v—w][;2(p) > 0 so we will assume contrarily that (v(m) — w(’”)) —0
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in LZ(D). Then, on the one hand, the bounded sequence
ap = / w5 qy
D

may be singled out to converge to some a € C from which we know by (ii) with C = 1 that

M2 w2 [pm) —ypm)])?
% > |a| > Re(a) :,513;, v HLZ(D) [[w ”LZQD) v w HL2(D) > % ’
ie. a=1/2. Since 0 < arg(k) < 7/4 and n # 1, we may also conclude
Re(a(nk> —1%))| > 0. 4.8)

On the other hand, right-invertibility of the trace operator in combination with assumption
(iii) ensures the existence of boundary-compatible lifting functions 8(") € H2(D) for all
m € N such that 9\(8”3 = (v(”') —w(’")) oD’ 8V6|<a"3 =9y (v(’") —w(’")) oD and ||G<m> ||H2(D) —0.
Green’s second identity (2.12) then yields

IRe(a(n — )| = lim |Re ( [ (o000 0 0 20 dx) ‘
JD

m—yoo

= lim |Re
m—yeo

/ S0 Ay ) 00) ppm) dx) '
JD

= lim |Re
m—yoeo

(
(
= lim Re(
(

) 2y )  yylm) 3,5 ds) ‘

m—oo

= lim |Re /g(m)Aw(m) —w(m)Ag(m) dx)‘
D

m—yoo

< Jim €02 [ )

=0,

which is a contradiction to (4.8). L]

Note that the previous convergence result can only hold modulo subsequences in general
since no information about ITE multiplicites are used, implying possibly different eigenfunc-
tion limits. Next, we derive an a posteriori estimate similar to (3.10) which allows to bound
eigenvalue deviations, cf. assumption (i) above, at each approximation step m in terms of
boundary errors, cf. assumption (iii), for any weakly convergent sequence (v<’”),w(’”)) in
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L?(D) x L*(D). Tt will also facilitate to establish convergence rates for concrete minimizing
sequences when m — oo, cf. Theorem 17.

Lemma 2. Let k be an ITE with eigenfunction pair (v,w) € L*(D) x L*(D) and assume that
(5.7) € U(K). If

Jpvv—nwwdx

— >€>0, (4.9
V1l 20y + WMl 2y

then there exists a constant C > 0 which depends only on the boundary data of (v,w) such
that for admissible (v,w) it holds that

_2 ou (T — )12
T AT CCe T

-k <= = (4.10)

H“HLz +Wllz2(p)

Proof. Since v—w € H3(D), we may infer with (2.12) that

/ (v— W) AT — TA(v — w) dx = 0
D
and in particular
/ VAV —VAvdx = / WAV — vAwdx .
D D
Simple manipulations show that
(k* — Kz)/ W —nwwdx
D
= (K> — K'z)/ vvdx — (k% — Kz)/ nwwdx
D D
= / VAV — VAvdx—/ wAW — wAw dx
= / WAV — VAwdx — / wAW — wAw dx
= / wAV—w) — (V—w)Awdx
or equivalently, in rearranged form

o] ‘ [y WA — ) — (V— ) Awdx
— K| < = P
€ IVl 20y + W2 ()




40 Computing interior transmission eigenvalues of isotropic and homogeneous media

We can take an auxiliary lifting function € H?(D) thanks to right-invertibility of the trace
operator which fulfills 6|, = (V—w)|5p and dy 6)5p = 0. Exploiting (2.13) and (2.14) gives

/D WA — ) — (7— W)Awdx’

< /wA(V—ﬁ—G)—(V—W—B)Awdx‘—i— /wAQ—GAwdx‘
D D

<N19v (¥ — 7% —

<IN 001, 1,3 5 160,30 1900, 3

<Al S

<INy 91 oy 17730 1900, 3

s’é\/uwwnz G-Iz,
H2(dD) H2(dD)

where we have set

€= \/HWH2 o Flloww] <oo.
H™ 2(dD) H™2(dD)

The previous two results then complement in the following way.

Corollary 3. Let conditions (i)—(iii) of Theorem 1 hold for { (v(m>, wlm) K<’”)) }mEN cUxC
which detects some ITE k. Assume that each eigenfunction pair (v,w) from the eigenspace of

k fulfills
/vzfnwzd)ﬁéo 4.11)
D

(or alternatively HVHiZ(D) - nHWHiQ(D) # 0 if k = k). Then there is a constant C > O which
depends only on the data of corresponding (v,w) such that

I =y 196 (65—

H2 (9D H

[SE

(9D)

’sz (K<m>)2‘ <cC (4.12)

IV ) + 1 2

Proof. Since ITEs are isolated points, we restrict to the case that either k(m) — k, or

k(™ fails to be any other ITE. Assume then contrarily that there is a subsequence of
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{ () wlm) jem)) which we do not relabel in the following and which satisfies

meN?

2 3
H3(ID

IV 2 1 2

2

P

(m)

with C™ o, According to Theorem 1, a further subsequence of {(v(m),w(m>) }m eN
converges weakly to some eigenfunction pair (v,w) in L?>(D) x L*(D) that satisfies (4.11). In
particular, due to the lower bound from assumption (if) therein, we conclude

Jp vt — aww(™ dx N
>e>0

Ve 2y + 11w 2 )

for m large enough. Hence, Lemma 2 recovers cm) < C /E to be bounded for those m, which
then contradicts our initial blow-up assumption. |

Corollary 3 is still limited for fully justifying (4.12) due to (4.11) which depends on the
unknown exact eigenfunction pairs (v,w). The next theorem therefore shows that at least
for kI(R} ) and sufficiently large refractive indices n the real-valued-ITE version of the critical
integral term does not vanish.

Theorem 4. Let k = k]g)(n,D) be the smallest real-valued ITE for the scatterer D with
refractive index n. If n > 1 is large or 0 < n < 1 is small enough, we have the eigenfunction

relations
W2 — w2y <0 or vl —nlwlZp, >0, @13)

respectively.

Proof. For the sake of presentation we will assume that n > 1 since the case 0 < n < 1 works
structurally similar. Because v and w can be expressed by

Au+ nk’u d Au+ku

V= an w=-——+

(1 —n)k? (1 —n)k?
according to (4.4), the basic idea for proving (4.13) will be to exploit isometry of the Fourier
transform with respect to the single function u to obtain an algebraic quantity which is
controlled by n. The fact u € Hg (D) shows that u, v, w extend naturally by zero outside of D
so Plancherel’s identity (2.7) gives
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1
/|v|27n|w|2dx: / \Zv — | Fwl?dE
D R2

(2m)?
1 |.Z (Au+ nk*u)|? — n|.Z (Au+ k*u)|?
- (27)? /RZ (n—1)2k* d

1 / 7|9Au\2+nk4|ﬁu|2d§
(2m)? Jr2 (n—1)k*

1 —|E[*+nk*
= (27[)2 /RZ (’171)]{4 |c/u|2dé .

As will be shown later, we have for k = k]%l )(n,D) that nk* — 0 and likewise R(n) — 0 for
n — oo, where R(n) := k+/(2n— 1) is the solution of p(t) := (—t*+nk*)/(n— 1)k* = —1 in
t. With Bg ) (0) being the disc centered at the origin with radius R(n), we split the integral
and exploit monotonicity of p to deduce

' —|E[* +nk? - 12 / —|E[* +nk? 2
2L T | FulPdE + LT | Fud
/BR<,,><0> (n—1)k* [Fulds By (0)c (n—1)k* [Ful"de

2 2
<pO) [, 1P p(Rm) [P

R(n)

_n o112 - a2 N a2

2”71 o 2 2 2

The first summand can be made arbitrarily small in terms of growing n according to

IIE“ulliz( ) < (max | Zu|) 2R (n)>

BR()I)(())
< % 7R ()
< |ullZ2 ) IDITR(n)?

where |D| denotes the two-dimensional Lebesgue measure of D. Putting everything together,
we finally obtain

lllZ2) (201
/D|v|2—n|w|2dx: 4L;(D) (nnl D|R(n)2—47r> <0

for n large enough due to the decay of R(n).
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It remains to show that n(kﬁg)(n,D))4 — 0 as n — . Due to (4.7), the magnitude of
k]g ) (n,D) can be bounded from above by k]g ) (n,B) for any included disc B C D which thus
amounts to show the limit assertion for the unit disc as scatterer. In this case, selected ITEs
k> k]g)(n,B) solve

=0, (4.14)

det(Jl(k) Jl(k\/ﬁ)>
kJ{ (k) kv/n (ky/n)

where J; is the first Bessel function of order one and the prime indicates differentiation.
This relation follows by expanding (v,w) as in (3.9) and applying the ITP boundary data,
respectively. Luckily, (4.14) can be restated more compactly as finding roots k of the
piecewise continuous function

8(K) == f(x) = f(VnK) ,

where

Now let j; < j» be the two smallest positive roots of J; and choose n > 1 large enough
to ensure j, < ji/n. Then set ki := j; /+/n as well as k, := j,/+/n and observe that g is
singular at those points, but continuous in between. Also, those poles have different signs
according to

li K)=—1 K)=— d li K)=—1 K)=
K{%g( ) K{I]glf(ﬁ )=—c  an Kggzg( ) K%f(\/ﬁ )=oo,
which follows from the basic facts that J; < 0 in the interval (ji, j2), J{(j1) < 0butJ{(j2) >0
and that both f(k;), f(kz) are finite. Therefore, we can make use of the intermediate value
theorem which guarantees for sufficiently large n some root k of g fulfilling ky < k < k», or
equivalently the uniform bound j% <nk*< j% as n — oo, In particular, nk* — 0 which finally

proves our lemma. O

Concerning complex-valued ITEs with regard to the previous theorem, we want to show
that (4.13) would vanish whenever k has non-trivial imaginary part. Note, however, this does
not exclude (4.11) to be non-zero.

Lemma 5. If (v,w) is an ITP eigenfunction pair with ITE k € C\R, then we have that

1912y — 1IR3 ) = .
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Proof. Let {(v<’"),w(’”)) }mEN € U(k) be a recovery sequence for (v,w) in the sense that
(v(’") — w(’">) — (v—w) in H3(D), cf. Corollary 9 later. In particular, v(™ — v and w(™) — w
in L?(D) according to (4.4). Applying Green’s formula then, we obtain

() [ [ = nfwl*ax
D

= lim Im <k2/ Ympm) _ o (m)ys(m) dx)

m—yoo

= lim Im (/ W Aw () — 5 Ay >dx>
= lim Im( |Vv | — ’V )’2dx+/ WM g, w(m) _5m) g m) ds)
e oD
= lim Im ( ))avw(m) 13my, (w(’") — v(m)) ds)
m—yo0
and the assertion of the lemma follows since Im(k?) # 0 by assumption. O

4.3.2 Approaching the method of fundamental solutions’ framework

So far we have considered the very exhaustive approximation space T which fits all feasible
scenarios of Trefftz methods for corresponding ITE detections. However, when turning
to practical implementations, one is usually only given a limited subset of trial functions
which can mostly be generated via convenient degrees of freedom. The question whether this
reduced class is still sufficiently dense to make the approximation assumptions within Theo-
rem 1 realizable is then open but necessary to answer, especially for numerical applications.
Thanks to the promising results from Chapter 3 we will representatively confine to MFS trial
functions in the following: We recall that &, = 1H (K\ e |)/4 is the radiating fundamental
solution for the Helmholtz equation for which we need to assign auxiliary source contours
I" again whose individual effects on ITE approximations will be discussed in the numerical
section later. Up to now I is assumed to be of class C2 and to fulfill the constraints I = 9Q
with D C Q as well as the length bound |['| < eo. We then refine Uyrs C U given by

Unrsi= U V().
meN,
O<arg(k)<F
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where for x € C\{0} and a sequence of source point sets {s Lm) ... ,s(m/’”)} € I" becoming
dense for m — oo we set

Upis (i) = {(v('"),w(’")) ) = Y D 5/ i),
. (4.15)

WY @ (i sUM)BUM o B e @m}_

Jj=1

Additionally, we introduce the auxiliary spaces
Unirs(K) = {(m) L V= Dyenpa, W=D e x, by (a,b) € LX) x L2(r)} ,

which allow for continuous superpositions as in (2.20) and will thus simplify a density proof
for Uyrs with respect to ITP solutions later. Although U/E,I";)S(K) ¢ Uyrs(x) for any m € N,
the next lemma states a direct connection.

Lemma 6. Given any boundary integral solution u = ®y x| a to the Helmholtz equation

with a € L*(T') and the above assumptions on T. Then there exists a sequence of MFS trial

functions

m

Z _s J/m ali/m
where oi/™) e Cforalll < j<mand {s(l/’”),... (m/m) } € I" are independent sets of
source points becoming dense for m — oo, such that u™ — u in H'(D) foralll1 € N. In
particular,

UMFS LJ UMFS )
meN

Proof. For a fixed collection of source points {s(j/ m) C I' we partition I into m

}1SjSm
disjoint connected fractions {VW”‘)}K i<m such that sU/™) e 4li/™) for all 1 < j < m. Then

define the approximation kernels CID( " . DxT —C by

CID( (x,5) = Z]lw/m (8)Pr(x—s),
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where L i/m denotes the indicator function on the set y//")_ Similar to (2.20) we can then
define 1™ by convolution

X / <I>§<m>(x,s)a(s)ds = Z Oc(j/'")CI)K(x—s<-i/m>)
T j=1

with the identifications

oli/m) ::/_ a(s)ds .
yi/m)

The difference of u and u(™ can therefore be written for any / € N as

sug|8l(u—u(m))| < SUBZ -/W/’") &l(dDK(x—s(j/m)) — Dy (x—s))|a(s)|ds .

xeD xeD j=1

Since |[x— s(j/’”)| —|x—s|| < s — s(i/m) |, @, € C(R*\{0}) in combination with TND =0
implies the existence of an m-independent Lipschitz constant L; > 0 such that

|81(d>,<(x—s<j/m)) —CDK(x—s))| < Ll}s—s(j/’")| .

By density of the source points in the limit m — oo and |5 — st/ ’”)’ < ’7/(/'/ ) |, where the
latter denotes the measure of the segment Y\//"), we finally obtain

suB|81(u—u(m))} < Ha||Lz(1—)\/|F|L112qE ‘y(j/'”)‘ —0.
<j<m

xeD
The result now follows by applying the definition of || @ || (p). O

In order to prove density for Uprs(k) in the space of ITP solutions for every ITE k, we
will work with the equivalent 4th order reformulation (4.5) in the sequel and derive its own
fundamental solution from corresponding Helmholtz kernels. In particular, its form shows
that the MFS ansatz for approximating (v, w) separately as in Upps and foru =v—w as a
whole is equivalent.

Lemma 7. If ®y and P are fundamental solutions to the Helmholtz equation with wave
numbers K and \/nx, respectively, then the kernel @, /zy) := (@\/;K — @) /((1—n)Kk?) is
a fundamental solution for the composed fourth order operator (A+ x*)(A+nx?).
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Proof. Let ¢ € 2(D) be an arbitrary ‘test fun.ction and set CID{K, i) (x) 1= P, ) (y =)
for some fixed y € R? (likewise for ®). and & " jax)- Then we can check easily that

/Dd%K’\/ﬁK (A+ k) (A+nKk*)@dx

cp}f cI}‘,;
/ (- (A+x%)(A+nKk*)pdx
D

(]—1111(‘2(/ @ (A+K)(A+nKk®)@dx — /@y(A-l—K )(A+n1<2)(pdx>
A9 +K(y)  Ap(y) +nx’e(y)
 (1-n)k? (1—n)K2
=00),
which proves the lemma. O

We are now ready to prove the announced density result.

Theorem 8. Let u € H*(D) be any distributional solution to the fourth order equation
(A4 x2)(A+nk?)u = 0 with 0 < arg(k) < m/4. Then there exists a sequence of elements
{(v<m),w(m)) }mEN C Umrs(x) such that (v(’”) — W(’">) = u"™ — uin HX(D). If dD is of

class C\\, then in particular Hu(m) — MHH%(QD) — 0 and Ha" (u< —u) || Lop) — 0.

Proof. Parts of the following proof are inspired by Theorem 2.1 and Theorem 2.2 from [17]:
Fix any k and assume that iz € H2(D) ~ H2(D)* is chosen such that

(I, @, /) * @+ P e Hp b>FI*2(D)7H2(D) =0 (4.16)

for all (a,b) € L*(T") x L*(T"). By definition of @, /nx) from the previous lemma we see
that (u,v — W>FI*2(D) w2 (p) = O for any (v,w) € Uyrs(k). Therefore, if we can show that the
latter implies

() g2 2y =0 (4.17)

for every distributional solution u € H?(D) of (A+ k?)(A+nk?)u = 0, the Hahn-Banach
theorem would yield the desired density claim since no intermediate functional extension
would be possible.

We define the auxiliary functions which fulfill after corresponding restrictions u* :=
D /iix) ¥|p U € L>(D)NC=(D°) and w* := @ k|, U € L?*(D)NC>=(D%). We then obtain
via distributional Fourier calculus, cf. (2.8), and using radial symmetry of the kernels ® /...
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and q)(K,\/ﬁK)

0= <’77q>(K,\/EK) Hp @+ P e ¥ b>I-1*2(D),H2(D)

B (2711)2 /ﬂ%z FU(E) T (P i) #ira) (=€) + FU(E) T (P e 4. b) (=) dE

_ (2;)2 [ FAET (@ i) (—8) Fal—E) + FUE)F (B ) (—E) ()

- (2;)2 /]R FU(E) T (D, i) (E) Fa(—&) + FU(E)F (® ) (£)F (&) dE
(23:)2 /]Rz Fa(—E)F (@, jix) #p 1) (E) + Fb(—E).F (@ %), 1) (€) dE

- (zylz)z /]Rz Fa(&) T ()(—&) + Fb(E).F (w*) (—E)dE

=/Fau*+bw*ds

for all (a,b) € L*(T") x L*(T") whose embeddings as singular-supported distributions on R>
were not explicitly relabeled as such. In particular, we may conclude that ”\*r = w"‘F =0.
Using the pointwise estimate

Vr(dow® —iv/nkw") ()] < V|0, e =iV il 2y |l -2 ) »

where x — D := {x—y: y € D}, in combination with standard recursive differentiation
formulas for the pth Hankel function of the first kind as well as the asymptotic expansions

2 . pnx 1
H,(,”(z) = \/ﬂ:—ze‘z*%*z +0 (z)

for |z| — oo, cf. [1], we deduce that also w* fulfills the Sommerfeld radiation condition.
By uniqueness of radiating exterior Helmholtz solutions on C>-domains for Im(x) > 0, see
[72, 32], and (A+ nKQ)w* = u in the sense of distributions, we may conclude that w* =0
outside of Q (recall I' = dQ). Due to analyticity, w* even vanishes identically in D as
exterior Helmholtz solution. We want to similarly prove in the following that u* € H3 (D) for
justifying its role as alternative distributional test function later:

Using the definition of @ ), direct calculations confirm the distributional relations

(A+ K" =w* = (A+K2) (Prex), W),
(A+nk?)u* = Dk, U= (A+nK2)(<I>,<*‘D w).
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This combines to 0 = ((A4nk?) — (A+ &%) (u* — Dy ), W') = (n—1)(u" — Dy x, w*) and
implies the additional representation u* = @ %, w*. The same uniqueness and analyticity
reasoning as for w* now yields u* = 0 in D again and, by a regularity bootstrap argument
due to w* € L*(D), we then conclude u* € H3 (D). Therefore we can find a sequence of test
functions {(p*(”’)}meN C 2(D) such that @*"™) — y* in H*(D). Taking then any distribu-
tional solution u € H*(D) of (A+ x?)(A+nk?)u = 0 as in (4.17) and another approximation
sequence {(p(p)}peN C 2(R?) with ¢?) — u in H?(D), we may finally compute, using
(A+nKx?)(A+ k?)u* = i in the sense of distributions,

(i) 22 o) = 10 (0,07 -2 o )

= lim <(A+nK‘2)(A+ K'Z)M*, (P(p)>H72(R2)7H2(R2)

p—reo

<(A +nK?) (A4 K2 )u*, ”>1§—2(D),H2(D)

= lim [ (A+x2)@*"™ (A4 nk?)udx

m-—yoo D

=0.

Since u was an arbitrary homogeneous solution and thus i, the desired density result for the
interior domain is thereby proven. Appling the trace theorem extends the approximation
result to the boundary of D in corresponding norms. L]

Putting everything together, for any ITE k and its eigenfunctions we can prove existence
of approximation sequences { (v, w(™), k(™) }meny C Umrs x C.

Corollary 9. Let k be any ITE with 0 < arg(k) < 1t /4. Then there exist MFS trial functions
{(v('"),w(”’), K(”‘)) }mEN € Uyrs X C such that (i)—(iii) from Theorem 1 are satisfied.

Proof. Choosing k™) = k for all m € N, the assertion follows by combining Theorem 8 and
Lemma 6 with (4.4) and (4.5). [l

Note that in general one cannot waive any additional structure of fundamental solutions
generating Uyrs like the radiating property yet still keeping the previous density results
for any admissible I'. For example, working only with the singular imaginary part of @,
i.e. with Yp(k|e
[1], D = B1(0) and I" = dBg(0) such that R > 1 is a root of ¥ show that corresponding trial
function (3.1) and thus linear combinations of such vanish at the origin. Consequently, one

), where Yp is the Bessel function of the second kind of order zero, see

would not be able to approximate Helmholtz functions for k¥ = 1 which are non-zero at the
origin any more. From this perspective, the radiation condition (4.2) is also a useful auxiliary
feature to ensure unconditional MFS approximations in the end.
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4.3.3 Convergence rate analysis

Subsection 4.3.2 has representatively reduced the trial functions of interest to Uyrg C U
which has proven to be sufficiently dense for ITE approximations. However, it is not clear
whether MFS sequences as in Corollary 9 converge fast and are numerically attractive at
all. In the context of Laplace eigenvalues from Chapter 3, Figure 3.6 indicated for D as unit
disc that geometric convergence can be achieved when calculating the smallest Dirichlet
eigenvalue via the modified MFS. Generally, one expects the decay to depend on the regularity
of solutions to be approximated. Since we can rather control the scattering domain D than its
spectrum of eigenfunctions, the next lemma states a regularity connection between both in
the context of the ITP.

Lemma 10. Let dD be of class C! with [ > 2 and (v,w) be a solution to (4.3) for some ITE k.
Then v,w € H=2(D).

Proof. The result follows by applying regularity theory for elliptic operators of general order,
see for example Theorem 9.8 in [2], to (4.5). [l

In the sequel we aim at establishing MFS convergence rates for ITE errors controlled by
the collocation number m as well as the smoothness order / of the scatterer D. Our analysis
will be based on (4.12) whose right-hand side will be bounded by proper approximate
eigenfunctions (v(m) , w(’”>) € Uyrs and source points distributed on I' = d Bg(0) for technical
reasons. Although the actual MFS objective is the difference v(") —w("™) for which zero target
data are given along the boundary by the ITP, we decouple the problem by approximating
v and w separately in the interior as Helmholtz solutions. This is motivated by satisfying
additionally assumption (if) from Theorem 1 and the fact that there exists already profound
literature on the MFS for solving Helmholtz-type equations. However, they either do not
deal with @y, see [75, 93], for which we refer to our warning after Corollary 9, or they state
L?-boundary estimates with control constants C depending implicitly on the function to be
approximated, see [10], which is too restrictive in our case, cf. Theorem 1 (iii) and (4.20)
below. Still, we will apply their techniques, especially from the Laplace case in [17]. We
start with the following independent result about generalized harmonic polynomials for the
Helmholtz equation with real-valued wave numbers k > 0 from Vekua theory, see [77, 78].

Theorem 11. Let D be a bounded Lipschitz domain, star-shaped with respect to a ball and
assume that the origin is contained in D. Let the exterior angle of D be bounded from below
by Am with A < 1 and assume that u € H'(D) with [ > 0 solves the homogeneous Helmholtz

equation with wave number K > 0. Then for each m € N there are Fourier-Bessel functions
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1™ of the form

i (r,0) = a ™ jo(xcr) + Y J5(xcr) (alP/™ cos(pg) + P sin(po)) (4.18)
p=1

=
such that for all 0 < j <1 and a constant C > 0 which is independent of u it holds

. () \ A=)
[l . gc( ’(% )) 1y - (4.19)

Note that for general C'-domains D, any A < 1 is feasible while A = 1 implies convexity.
In either case, we can bound approximation errors between Helmholtz solutions # and MFS
trial functions u(™ = (™M) from (3.3) by

(| —u < Ju—at™ V[ =™y (4.20)

<m)||HJ'(D >||H1'(D

The first summand is then bounded by (4.19) so only convergence for the second term needs
to be analyzed. The advantage of changing the MFS target function dynamically within the
triangle inequality above is that i is always an entire function unlike u itself and therefore
arguments are not restricted to D any more just like for Uysrs which in turn offers a more
global investigation. For this, we still need a couple of auxiliary results to encapsulate some
technical ingredients.

Lemma 12. For p,p € N and 0 < 8 < 27 fixed it holds that

msin(pe), forp=p

0, else

/(*)Zn-cos(p((p — 9)) Sln(ﬁe)de —

. neos(pg) , forp=p#0
|| cos(plo—6)cos(0) a0 = § 27 forp=p=0

0, else .

Proof. If p # p # 0, we may compute for the first identity via integration by parts with
identical boundary terms due to periodicity of the integrands

2T 21
/ cos(p(¢—0))sin(56)d6 — !i/ sin(p(¢ — 0))cos(56)d0
0 pPJo

-

/(;zncos(p((p — 9))sin(56)d6
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and else

2T 2T
/ cos(p(¢— 0))sin(56)d6 — 5/ sin(p(¢ — 6))cos(56)d6
0 pPJo

- @)2/(;2” cos(p(¢ — 6))sin(p6)d6 ,

which shows in either case that the integral must vanish. Recalling for p = p the trigonometric
addition formula sin(a) —sin() =2cos ((a+ ) /2)sin((a — )/2), we obtain with o« =
pp and B = p(6 —29)

27 1 2=
/ cos(p(p —0))sin(pB)do = 3 / sin(p0) —sin(p(6 —2¢))d6 = wsin(py) .
Jo Jo

Using cos(a) +cos(fB) =2cos ((oc+ B)/2)cos ((a — B)/2) for p = p # 0, the second iden-
tity follows similarly. O

The next lemma expresses (4.18) in terms of @, and thus builds the first bridge to the
MEFS framework.

Lemma 13. With the notation from Theorem 11, we have that

. (0/m) 27 . .
ﬁ(m) (r7 (p) :a(]7>/ H(gl) (K|I"Cl(p _R616|) do
271V (kR) o
m (p/m) 21 . .
a ; ; -
T/ Hél)(K|re‘P7R69|)cos(p9)d9 (4.21)
p=121H; " (kR) /0
i /)

2 . .
) (]7)/0 H(()l)(K|re"p—Rele|)sin(ﬁ9)d9.
=2 (kR)

Here, D C Bg(0) and its source points are similarly represented in polar coordinates by
(R,0).

Proof. According to Graf’s addition formula, see Equation 9.1.79 in [1], differences within
arguments of the first Hankel function can be expanded as

H" (k| re'? — Rei®|) = HY" (kR)Jo(1cr) 42 ZIH,(,”(KR)J,,(K;») cos(p(¢—0)) .
=

We see that the first Bessel function of order p appears both in (4.18) and above, so it can be
extracted from the latter by exploiting the orthogonality relations of trigonometric functions
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stated in Lemma 12. We obtain for the p-th cosine term

2
7rH (k|re'? — Re'®|) cos(p0) dO

—/ ( (kR)Jo(Kkr)+2 Z H KR)JP(Kr)cos(p((pG))) cos(po)de  (422)

=
= 21t " (kR)J5(xr) cos(5p)

and analogue for the sine-dependent summands
2
/ H (K|re"p Re'%|)sin(p0)d6

,/ KR)JO(Kr )+2 Z H KR)JP(Kr) cos(p(p — 6))) sin(po)de (423
p=1

- an;U (KR)J5(icr) sin(5g) -

The lemma follows by substituting the above Bessel function identities into (4.18), noting
that HI(;I)(K‘R) # 0 forall k,R € R and p € N, see Remark 1 of [10] . O

Similar as in Lemma 6, (4.21) reflects a continuous convolution-type superposition which

we need to discretize in order to obtain a valid MFS candidate (™ ’%) For instance, the

27:1

trapezoidal rule would give for m equiangular source points {Re } rewritten in the

complex plane for 1 < j <m,

_ (0/m) — m 4 j
(m’m)( . a (1) ip _ 2717!'#
u nLQ)=————1) H, ' (k|re'’—Re
o 20 (5 )
alp/my m

0
+ f Y HY (K ¢ — Re™in ) cos (271: / ﬁ)
e rel® _ : L
p=1 mHEl)(KR) =1 0 m

p/m)  m ; i
b i )sin (anﬁ) .
m

) Hél) (K’rei“’ — Re2™
We are interested in bounding the defect of u™™) and 7" for which we freeze the radius

J(xR) /=1

r = const < R in the sequel to switch temporarily to the one-dimensional setting. Hence we
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define
m,p/m 1 2 o : ) j
eﬁ,r”’/ )((P) N ) D 7r Z H ( K|re® — Re2™iin )cos (271:]1))
27rH~ (kR) m
) (elrei® — Re®|) cos(5 S
f/ Hy ' (k|re'® —Re'®|) cos(p6)do | , 0<p<m,
0
(m,p/m) . 1 ’ ip _ p.2mil J ~
=_— H R 2w
€pr (ro):= 271:H~ ( ( Z ( re e )sm nmp
2ﬂH(l) ip CINEN ~ _ ~
— o (k|re'? —Re'®|)sin(p8)do | 1<p<m,
0

which implies

mO/m)

+ Y PP P/ (4.04)

M=

I,t(m"ﬁ)(r, o) — Et(ﬁl)(r,o) a(0/m),

=1

Since both efl ,’p p/m) and e ( ’p p/m) are linear combinations of 27-periodic functions each, we
can study their errors in term% of circular harmonics. Fourier expansion with respect to a sine

and cosine basis yields

Froos e(m P/ rn) = (m

e () = 2 Feoseuy?™ (1) cos (19) + Fanel "™ (1) sin(lp) ,

P ([ sin(lp)

(/) N

)i Z, qe m m

/7)) — CO— +Y 7 P (1) cos(I9) + Fine,
=1

(4.25)
where Feos, Fsin are adapted from (2.11) and given for e € L>([0,27)) by
~ 1 27 ~
ycose(l) = ;/0 e((p) COS(l(p)d(P )
~ 1 r2= o~
Fanell) = [ e(g)sin(lp)dp.,

with 0 < [ < o, Hence we obtain for 0 < p < m with (4.22) after changing the order of

integration
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ycoseamr P/m) (l)

1

27 ( 5/7)
— [ el (g)cos(lg) do
T Jo

m , .
1 / 2n ZHCEI)(K i )cos (Zﬂ]ﬁ>
27r2H (KR) m i3 m
2n (1) . 0 ~ ~
—/ Hy' (k|re'® —Re'®|) cos(p6)do | cos(lp)de
0
m 2 . - J
71 2 Z / Hél) (K‘re‘q’ — Re?™i
27r2H (KR) =1\ 70

2T 27 (1) ; o
—/ / Hy" (x|re'? — Re'®|) cos(Ip) dg | cos(p8)d6
0 0

1 T & Jj~
= | 27rH~ (KR)J;(xr)cos (10 U/mY ) cos <27rp)
2712H( (kR) (’" ; ( q )) m

rel? — Re?™

N———

~ J=
) cos(l(p)d(p) cos <27rmp

2
_/ (ZnH (KR)J{Kr)cos(l@))cos(pG)d@)
0

=1

(1) - m 4
A 31 o) o)
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and likewise

(1)
~~ _  H(kR)J{xr m P i
fsinegr_r;p/m)(l) :M <27[ Y sin (2ﬂ11> cos (Qﬂ;]ﬁ)
1 m m

et (kR) \ ™ [
27 ~
—/ sin(16) cos(p0)do | ,
0
(1)
~ . H'(xR)J{xr) n i i
ycose,gm’p/m)(l) =1 b 2—n’Z’cos 222 7) sin 27ri'pv
" ﬂngl)(K‘R) m 3 m mn

_ /0 2”cos(zira)sin(ﬁe)de) ,

(1)

~~ H(kR)Jxr mn ) .

ﬁsmeém’p/m)(l) :M m Y sin 2127 ) sin (22 Lp
! ﬂH[gl)(K‘R) m i3 m m

/Oznsin(ie)sin(ﬁe)d(a) .

The next lemma helps to evaluate the trigonometric integral defects within the Fourier
coefficients above.

Lemma 14. Fixing m € N, it holds for 0 < I< oo, 0 < p < mthat

2 m R . B 2 . _
Y sin (2::’1) sin (271:][7) - / sin(10) sin(59) d6
= m m 0

m

—m, forp=1#£0, (I+p)emZ
n, forp#l, (I—p)emZ, (I+p)&mZ
—7n, for(I—p)&mZ, (I+p) € mZ

0, else ,



4.3 Boundary approximation theory for interior transmission eigenvalues

57

21 Z cos (2717 )cos <27r’iﬁ> _ /0 7 cos(10) cos(58) d6

m, forp=1#0, (I+p)emZ

n, forp#l, (I—p)emZ, (I+p) ¢ mZ
=2m, forp#1, (I—p)emZ, (I+p)eml
n, for(I—p)&mZ, (I+p)cmZ

0, else,

and

m j~ J 2 ~
Z sin (27rl> cos <27rﬁ> f/ sin(/0)cos(pH)do =0 .
= m m 0

2
m
Proof. We recall for g # 1 the identity ):;f’:_ol g=(1—¢")/(1—q) which implies

m

m—1 j
Z 2mmr _ Z e27171 r__ Z ( 271:17) m, for r € mZ
j=0 = i=1 0, else
and we may infer
2midr _ o—2milr

m . J e ml —
Zsm(Zﬂmr) =Y ——5 =0, VreZ

m J m eZﬂi%r_f_e—Zm%r m, for r € mZ
Y cos(2n=r) =) —F——=
m j=1 2 0, else.

Since sin(a) —sin(f) = 2cos (¢ +B)/2)sin(( — ) /2), we obtain with Lemma 12 for

the mixed integral assertion independent of p and I

2% Z sin <27r ) cos <27r,iﬁ> - /O " in(19) cos(56)d6 0

For the other identities we use cos(ot) —cos(f) = —2sin((a+f)/2)sin((a — f)/2) and
cos(a) +cos(B) =2cos((oc+ f)/2)cos ((a — B)/2), respectively, as well as orthogonality
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again to conclude

2% j o~ mo—
Zs 2717—1 sin | 2m=p —/ sin(10)sin(p6)do
m m 0

m =
Tm ] . 2r ~ _
mZ( ( l—ﬁ)) —cos( (l—i—ﬁ))) —/ cos(l0)cos(pH)do
J=1 0

0, forp=10=0

—m, forp=1+#0, (I+p)emZ

0, forp=1+#0, (I+p)&mZ

=n, forp#l, (I—p)emZ, (I+p)¢mL

0, forp#l, (I—p)emZ, (I+p)emL

—n, for(I—p)&mzZ, (I+p)emZ

0, else

and

m 5 ) . 2r -~
2z Z cos (27r]l) cos <2n]ﬁ> —/ cos(16)cos(p0)d6
m m m 0

- ]Z (cos (m lm) + cos < 7! (Tﬂ“ﬂ)) f/OZHCOS(fZVQ)cos(ﬁQ)dG

, forp=1=0

. forp=1+£0, (I+p)emZ

, forﬁzf#o, (Flv-i—ﬁ)gmz

. forp#1, (I—p) €mZ, (I+p) ¢ mZ
on, forp#1l, (I—p)emZ, (I+p)emZ
m, for(I—p)&mZ, (I+p)emZ

0, celse.

0
T
0
T

O

We can deduce the first spectral decay estimate for MFS approximations of Fourier-Bessel
functions on spheres.

Lemma 15. Let 0 < r < R, ¥ € R and choose r— < r such that x is no Dirichlet Laplace
eigenvalue of the disc B,_(0). Then for arbitrary approximation orders | > 0 and fixed
Fourier-Bessel degree m € N the MFS error ) — gy(m) from (4.24) with m equiangular
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source points on dBg(0) can be bounded in the regime 2m < m by

r—

e . r m—2m r n m
) =135,y < ' () () 1@ 28, 0 -

where the constant C depends only on I, k and the radii r_,r,R.

Proof. For a given wave number K € R and radii r < R, we fix some admissible r_ < r and
observe that J,,(kr_) # 0 according to (3.9) for every p € N. Therefore, we may compute
for/ >0

H”(m’rm —a™ HHl(aB,(O))

- Ha(o/ﬁl) (m0/0) f 1) P17 b(ﬁ/ﬁ)g(,n‘,;/,m‘

Car
’ = br Alutas,0)
(/) e(m,()/)ﬁ)
< |la mJ()(Kr_) ar
)| 19,0
$° /) ewr”™ | m e,
+ a P Js(er_ ) = —— + bPIM 5 (1) =2
=1 J]‘;(Kr,) J,;(Kr,) H’(&Br(O))
a0/ | )
< @™ Jo(rer_) ||| =25
D) |19, 0)
f o g Sm:5/7) 1 | 1)
+ 35 Ja sy 41 B )| B
=1 T |9, 0) T 198, 0)
Ly (i)
S;Hﬁ( )||L2(33,7<0))£r
with
() om0/ |12 i, || /i) |2 Pl |12
T o) M e T5(kr) '
H!'(dB,(0) P=LI"P H!(9B,(0)) p H!(9B,(0))
(4.26)

In the last step we applied (2.9) according to the Fourier coefficient relations

Fu™(0) = al%™ o (xcr_)
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and
B/ _p@li > | g 4 p el |*
|\ Zd™ ()| + | Fa™ (~p)|” = ( a ;1 a ;1 )Jf;(icr)
|a®/) 2 1 |p(2/m) 2
a 2
= 2 Jﬁ(K”'f)

4.27)
(m.i)

for all 1 < p < m and fixed r = r_. The remainder of this proof aims at controlling &,
in terms of m which we will consider summand wise. Combining (4.25) with Lemma 14,
exploiting especially 2m < m and Fneq (m,p/m) (l )= m e p/m) (l ) = 0 for all frequencies

I > 0, we obtain

’p/m Zﬁbm h";p/m sm(l(p)
=1

_ i Hl (KR)J~(K‘r) (

—1 ﬂngl)(KR)

Z sin (27:1) sin (27: p) sin(l@)

j=1
mo

—/ sin(/0)sin(p0)do
0
HY (kR (k)

.
=y

=1 (K'R)

sin((tm+p)@)

o g (KR)J,m 5(Kkr)

+Z tmp

=1 5 (K‘R)

sin((tm —p)@)

for 1 < p < m and likewise

e((, ,’p/m Zﬂcosea Lp/m )( I)cos(l9)
=1
KR)J;,
—Z i 1>)’ T coom+ 7))
= HY (xR)
)
~ H' '~ (KR)J,,—5(Kr
+ szp( Hin—p{ )cos((tm—f))(p).
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In order to dominate all the resulting series, we use the following large-order asymptotics for
Bessel functions with fixed argument z # 0, cf. Equation 9.3.1 in [1],

Jp(2) ! e\’ — o0
re e \ap) 0 P

[2 [(ez\?
Yp(Z)N 717p<2p> y P>

Since H, 1(,1) (z) = Jp(z) +1Y,(z), there is a uniform constant C > 0 such that

HY (R)JH{xr)

PN 7
l ! <C El r ! (eKR)
HY(kR) VP (R> 2p

for all ﬁ77> 0 but fixed x,r,R. We then obtain with (4.27) and (2.10)

le&s™™ a0 Zlff PRy
IGZ

(1) 2
H, " ~(KR)J s (1)

l o tm+p ~12y1
=— (1+|tm+ p|7)
4”,;1 HY (kR)
(1)
= | HY _(cR) (K7
Ly | P OB (7 ) (1+ |rm— 52’
4”: 1 H[; )(kR)

C2 > 25 2tm+2p CKR 1 ~121
< [ — = 2%t
= nzl<(zm+,3)2 () <2p> ) e+l
n 2 i 2p <r)21m*217 ekR\ >
4n (tm—p)2m \R 2p
_(ekR\?P [ r\2m-25 & /p\2m 212
< ekR r r _
= C”( 25 ) (R) E()<R) (m)

2~ ~
< Cpm?i=2 (“{’f) ’ (1)2’”‘2”
2p R

where we successively absorbed several numeracy or /-dependent constants into C without

2lem—p|*

N——

explicit relabeling. Hence we can bound for 0 < p < m < m
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o5/

Jﬁ( Kr_)

. 25
S Cﬁmzl 2 er (1)2"1721),’5, eK27 P
2p R 2p

HI(9B,(0))

Similarly, we obtain

el()m,ﬁ/zﬁ) 2

TR |25, 00

If p =0, it suffices to consider

1€ ™ 15 05, Z!ﬁ e OIRIEATRY
leZ
w ) 2
%Z i (R0
T3 HO ( R)
C e 2tm 2] 2
|H(gl K'R ZZ( )
c m2i-2 m
<
5" (kR) | (R)
and
olm0/m) ||2 c > (i)zm
Jolkr-) H!(9B,(0 |Ho (kR)Jo(Ker— )‘ R

Therefore, we can bound (4.26) in total by

m.an U r 2m—4'ﬁ r 25
@ <an 3 ()" ()
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which proves the lemma. |

We can finally put all estimates from this section together to specify the error decay
(4.20) for MFS approximations of Helmholtz solutions in terms of the collocation number
and domain regularity. For clarity, we absorb former dependencies on the source radius R
into control constants C in the following.

Theorem 16. Let all the conditions from Theorem 11 be true and choose D C Bg(0). Then
any solution u € H' (D) of the Helmholtz equation with wave number k > 0 can be approxi-

mated by functions ulm) of the form (3.3) with identical x and m equiangular source points
distributed on dBg(0) such that

m

1 A(l=J)
=y <€ (%57) " il @2

for 1 < j <. The constant C is independent of u and m.

Proof. We recall observation (4.20) which decomposes the desired decay estimate (4.28)

into

O P e P

(4.29)

New Moy -
Hi(D Hi(D)

Here, 1™ := 4™ and (™ are as in Theorem 15 with 7 to be specified next. For this we
choose r_ < r < R such that B, (0) C D C B,(0) and  is no Dirichlet Laplace eigenvalue
of both B, (0) and B,(0). Fixing some exponent p > 1, we pick for any m > 1 the unique
m € N determined by

() <
m—2(ii+1) A1
(S

which exists since the left-hand side is increasing while the right-hand side is decreasing in

(4.30)

m. Exploiting monotonicity of the logarithm then, we obtain
In(-)
},’)v’l 2 + r—

1
(m+1) <2+11nn(’;)> i@+ 1)—L—>m.
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In particular, we deduce 2m < m < Cit for some constant C > 0 which depends only on p
and r— < r < R. Thus, the first summand on the right-hand side of (4.29) can be bounded
with Theorem 11 by

~\\ A(l—)) A=)
= In(m In(m
|w—%Hmmns0(§)) HMW@SC<:;U Wl @31

m

for some adapted constant C > 0. For the other term in (4.29) we employ the previous lemma
with 271 < m < Cri and (4.30) to obtain

L A

HI(D) Hi(B,(0))
< [ — um||
H'"2(9B,(0))

gc’f—juiﬂ
mpP

<y
mpP—J

") HLZ(BBL (0))

H3(B,_(0))

<C

1 i
T sy -

Here, we also used our assumptions on the radii _, » in combination with (2.19) and the trace
theorem. By (4.31),
in terms of [|u|;1(p). Since p was chosen arbitrary, the decay within (4.29) is dominated by
the first summand and thus by the right-hand side of (4.31). O

mﬁ)HH/(D) < H” _ i‘(ﬁ)HH/(D) + HuHHj(D) can be uniformly bounded

We see that our derived MFS convergence rates established in the theorem above are
inherited from those of Fourier-Bessel trial functions. This is not very surprising since the
proof takes the latter as successive target functions which usually admit better convergence
results than domain-restricted approximations, cf. [10, 77]. Altogether, we can use the new
findings to further quantify theoretical ITE errors when approximating boundary data of
eigenfunctions with MFS trial functions for real-valued k and sufficiently smooth domains D,
cf. Corollary 3. It also gives an idea about which convergence rate one might expect when the

conditions of Theorem 1 are met by certain optimal { (v%,)l, w%,)l, K,(,Zq,z) } N C Uyrs X R.
me

Theorem 17. Let D be of class C' with | > 4 fulfilling additionally the domain assump-
tions of Theorem 11 and let k > 0 be an ITE such that all pairs (v,w) of its eigenspace
Sulfill HvHiQ(D) — nHwHiz(D) # 0. For every m € N distribute a corresponding number
of source points equiangularly on T = dBg(0) with D C Bg(0). Then a subsequence of
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{ (v%ﬁ,w%ﬁ, K,(”’:Q) }meN C Uyrs X R, defined for each m as functional minimizers of

\/n'ﬁ—vﬂ% ENGEITER
) H2(dD) H2(dD)
min

(m) .
K f K):= —
wrs(¥) @)U (x) V1l 20y + Wl 20

such that K,SZQ

‘kt (Kfn'?n))zl “c <1n(m)>w4> |

m

at corresponding local fggs—minima K= K,EZQ

— k, satisfies

Here, the constant C is independent of m.

Proof. Dominated by Corollary 9, we infer that f,EZQS(Kg:Q) < fjf,fn})s(k) — 0 which im-

plies that {(anr:',)l,w%,)l, KIEZQ )} N fulfills the assumptions of Theorem 1. In particular,
me

a subsequence of the functional minimizers converges weakly in L?(D) x L?(D) to some

eigenfunction pair (v,w) € H'=2(D) x H'~2(D) according to Lemma 10. With the help of

the previous theorem then, we can find (v, w™) € U IS,I"?S(k) such that

| A(l—4)
Il <€ (7).

m
1 A(1—4)
Hw_w(m)HHZ(D) <C(n,(nm)> ”W”H’*Z(D)

for all m € N. Since (v—w)|5p = dv(v—w)|5p = O, the trace theorem ensures

RTINS el

H2( )+||W*W(m)|| 3

H2(dD)
<C (=" oy + 0 =5 o)

3
H2(dD

and likewise

05 ) s < (= gy + = )
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Corollary 3 finally yields

m m) |12 = N2

R R
vain LZ(D)+mein 12(D)

I =l oy 1 =)

<c

IV 2+ 1] 2

<c (hl(m)>/l(/—4) 7

m

where all dependencies on (v,w) have been absorbed successively into C > 0. 0

Note for infinitely smooth domains D we would obtain spectral decay, at least in theory.
Therefore, we will finally focus on numerical aspects of the modified MFS algorithm for
ITE computations and study if the conclusions from this section are reflected by the discrete
setting, too.

4.4 The modified method of fundamental solutions from a

numerical perspective

So far we have established an abstract framework for ITE approximations of homogeneous
and isotropic media in exact arithmetics and Sobolev norms. In practice, however, the effects
of round-off errors and discretized norms are unavoidable and need to be taken into account.
In the following we apply the modified MFS algorithm for ITE calculations and present
numerical results to explore the practical competition between ill-conditioning, as intrinsic

to radial-basis-function-schemes, and theoretical convergence rates stated by Theorem 17.

4.4.1 Implementation details

In Section 3.4 we introduced the modified MFS which was specifically designed there for
the computation of Laplace eigenvalues. Recall that the main ingredient was an a posteriori
estimate like (3.10) which directly relates boundary errors from approximate eigenfunction
candidates of Trefftz-kind to corresponding eigenvalue misfits. In the non-self-adjoint ITP
case, approximation of ITEs and accompanying error bounds in terms of trial function defects
could also be derived yet in a more modular fashion, cf. Theorem 1 and Lemma 2. Hence
our concrete numerical implementation of the modified MFS for the ITP will emerge as a
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combination of both as indicated by Theorem 17. In order to explore the full computational
potential then, we relax some material conditions made in the theoretical section since they
served to simplify technical difficulties so far. In the following we also include Lipschitz
domains D since practical collocation is actually invisible with respect to local regularity
properties of boundaries. Regarding the various computational points required, we adopt

the notation from Chapter 3 and select for each m again {s 1/m) stm/ ’”>} C I" as sources
to generate UZE,IF)S( K) as well as {x Um) .. xlm/m } Cc dD for the boundary collocation
procedure. Further, we fix 7 random indicator points {)?(1/ m) . xm/ rﬁ)} € D which are

to free the MFS as auxiliary parameters from spurious eigenvalues also in the ITP case, cf.
Section 3.3.

Given some ITE £, a reasonable collocation version of Theorem 1 (setting C = 1 by
disregarding discretization errors for the sake of derivation) would seek for approximate
eigenfunction pairs (v(’"),w("’)) ey ,E;"F)S(K(”’)) such that

m

Z [ @) [ [ (GO P 2 1 (432)

while

i| RU/MY 3y (/Y [P 4|2 (c0Im) — guam) ((im) 2 0 (4.33)

for m — oo, In this way, the control assumptions (ii) and (iif) are directly addressed numeri-
cally, and (i) should be checked by inspecting the successive K(”’)-output. However, note
that a consistent discretization with respect to the actually prescribed, fractional Sobolev
norms in (i) requires more advanced techniques due to their rather collocation-incompatible
nature (2.10), so the boundary collocation above can alternatively be modified. Returning
to our compromise, trial function dependencies of (v<m),w(’”)) will be captured by the co-
efficient matrices B(x), VB(x)v, I(k) and B(y/nk), VB(y/nk)v, I(/nk) from Chapter 3,
respectively. In analogy to (3.12) now, the modified MFS matrix for the ITP characterized
by (4.32) and (4.33) would read, after absorbing appearing minus signs into trial function
coefficients,

B(k)  B(y/nx)
VB(k)v VB(\/nk)v
e ) . (4.34)
0 I(yaK)

M(x) =
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Having thus derived M (x), we can proceed as in Section 3.4, Figure 3.5, to get rid of spurious
ITEs and decompose

M(k) = Q(K)R(k) = @f((:)) ) R(x) , (4.35)

with Q;(x) € C¥"*2" and Qp(k) € C"™" now. Recall that the ranges of M (k) and Q(k)
are equal but it is only the unitary factor which, similar to (3.13), fulfills (4.33) implicitly
as soon as (4.32) holds. Therefore, it again amounts to make the latter vanish for which we
extract the smallest singular value from Qp (k) at each collocation step m as a function of
K € C\{0}, i.e.

K+ Opmin(K) = |05(x)7| (4.36)

min
neC? |n|=1

and call sufficiently small local minima x") approximate ITEs. We will also write &)

(tm) when linking to the ¢-th ITE k() or k]g ’m), respectively. Likewise, the underlying

or K
routine will be referred to as modified MFS.

Note that the modified MFS generally executes without the need of explicitly establishing
underlying approximate eigenfunctions. Still they are recoverable by taking the singular
Vector Nyin € C?™ associated with G,ni,,(K('">), i.e. the corresponding columns of VT in (2.1),

and computing the coefficient vector

(g) =R (5" Ny (4.37)

from (4.15). However, since unitary factors are perfectly conditioned, M(x) and R(x) should
both suffer from the same MFS ill-conditioning for all k¥ € C which makes the inversion
prone to errors. Numerical linear algebra still ensures that the residual, i.e. the collocation
misfit of the associated approximate eigenfunction pair from (4.15), is small. A more accurate
eigenfunction reconstruction scheme is proposed in [12].

At last, we want to remark that the minimization (4.36) cannot be performed for the
smallest singular value only, but also for higher ones. Hence, if i, (k) vanishes numerically
and coincides at that approximate eigenvalue K with two or more singular values from Qp(x),
the corresponding intersection number indicates the geometric multiplicity of x, see Figure
4.2. This comes from the fact that singular vectors are linear independent for each fixed
x and thus determine the kernel dimension of Qp(x), too. However, note that a rigorous
conclusion for the multiplicity of exact ITEs & in the limit would require deeper investigation.
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Fig. 4.1 Geometric error decay reaching machine precision for Kﬂg ) approximating the

smallest real-valued ITE kﬁé ) of the unit disc.

For now we focus on the computational aspects of the modified MFS and calculate concrete
ITEs of several test scatterers D in the following.

4.4.2 Numerical results

We complete this chapter with numerical benchmarks for the modified MFS applied to the
ITP and investigate its practical competitiveness for ITE computations. Because of

Aw+nk*w =0 inD Av+1(\/nk)>v=0 inD

Av+k*v=0 inD — Aw+ (y/nk)*>w =0 inD
v=w ondD w=v ondD
dyv=dyw onadD dyw =0dyv onadD

it suffices to restrict to the representative case n > 1. We start with the unit disc as in Chapter
3 and klg) =2.902608055212766. .. for n = 4 which we could compute independently via
(4.14) to have a numerically precise reference value. Concerning the location of collocation
and source points, we select m of them equidistantly on a circle with radii 1 and R > 1,
respectively, and employ a random distribution for 7 = 10 interior samples. Our first
observation is that the more R increases, the faster the modified MFS output Kﬂg ) converges.
Figure 4.1 shows the convergence history for R = 5 which exhibits geometric decay for ITE
approximation reaching easily machine precision, cf. Lemma 15 and Theorem 17. Repeating
this procedure for higher singular values as announced at the end of the last subsection,
Figure 4.2 additionally reveals the multiplicities 2,1,2 for the first three approximate ITEs on

the real axis, respectively.
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Fig. 4.2 Three smallest singular values of Qp(x) for the unit disc with m = 30 collocation

points. For example, the local minimum around k]g ) clearly disappears for the third singular

value which indicates that its multiplicity as approximate eigenvalue is two.

Next we compare a family of consecutive shape deformations to explore sensitivity effects
of the modified MFS. More precisely, we want to first focus on the transition from a disc to a
compressed ellipse where we fix the major semi-axis as unity and shrink the minor semi-axis
b successively. While keeping m = 10 throughout our ITE calculations, we select now m
equiangular collocation points along the scattering boundary dD whose complementing
sources are placed likewise on I'. The latter is again chosen as a concentric circle but with
radius 3 now. Unlike for the disc, the distance from sources to collocation points influences
the parametric performance more strongly for the ellipses and is even limited by individual
thresholds which then spoil the computational outcome when exceeded. Our ITE results in
this case are displayed in Figure 4.3. The determined values emerge as unchanged digits
from accumulating k") for large m whose minimal singular values in (4.36) are sufficiently
small, e.g. m = 25,...,50 and O’min(K‘('")) < 10719, We put tail-digits within the tabular in
parenthesis to indicate the existence of minor outliers for increasing m which we still expect
to be correct though. Obviously, the different number of recoverable digits suggests that the
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Do e =

| b=10 5=0.8 b=0.5 ——b=03 |
Semi axis b iy k) K P
1 2.90260805521276 | 3.38419483954017 | 3.41205395159979 | 3.97647211159188
0.8 3.13534121519068 | 3.48518298654316 | 3.54733071042719 | 3.88430612796681
0.5 4.33068623074(1) | 4.36895654200(3) | 5.40918291160(8) | 5.60124857917
0.3 6.552756364(5) 6.56055364(1) 8.0949566 8.1574357

Fig. 4.3 First four approximate real-valued ITEs for ellipses with unitary major semi-axis
based on the modified MFS without counting multiplicity for n = 4. Digits added in paren-
thesis underlay computational fluctuations but are expected to be correct as well.

more the domain deviates from the disc, the worse the achievable accuracy of our calculation
becomes. The intuition here is that the growing ill-conditioning of the modified MFS matrix
deteriorates the decomposition (4.35) and thus spoils the theoretical error decay. For instance,
the condition number of M (k) for the unit disc D with m = 30 at k¥ = 3.2, i.e. between
kY and k)
R R
to reasonably reflect dD, the more fluctuating results and thus less recoverable ITE digits

, is already of order 10'°. In particular, the more collocation points are needed

are expected from the modified MFS. All the observations hold likewise when computing
complex-valued ITEs, cf. Figure 4.4. We merely observe that the upper half-space of the
complex plane is less affected than the lower one by ill-conditioning artifacts of the modified
MES based on radiating fundamental solutions. However, this seems not restrictive at all
since ITEs arise symmetrically in complex-conjugated pairs for real-valued refractive indices
n.

Subsequently, an ellipse with a semi-axes ratio of 0.75 is successively deformed to kite
shape whose transformation is parametrized for 0 <¢ < 27 by

. (O.75¢os(z)+8005(2t)) . (4.38)

sin(z)

This family of scatterers was introduced in [29] for ITE computations via different boundary
integral methods which we may therefore use as further references. In terms of the pertur-
bation parameter €, the modified MFS with equiangular boundary points responds to those
domains according to Figure 4.5 and incorporates around 30 to 70 collocation and source



72 Computing interior transmission eigenvalues of isotropic and homogeneous media

Re(x)

Fig. 4.4 Exemplary output of K + Gin(k) in the complex plane for an ellipse-shaped
scatterer with major and minor semi-axis of length 1 and 0.5, respectively. The contour plot
is generated for m = 25 and n = 4. Centers of concentric level sets appearing in conjugated
pairs indicate ITEs. Because of too coarse resolution, the first two real-valued ITEs listed in
Figure 4.3 are indistinguishable here.

points each. Despite its smoothness, we observe especially for € = 0.3 that the modified MFS
runs into computational challenges with the formation of concave fractions. By trial and
error, a radius of R = 2 seems optimal when restricting I" again to concentric circles around
the deformed ellipses. Still, we are able to refine the results given in [29]. In agreement with
[10], we conclude that the more irregular the scattering boundary becomes, the tighter the
sources should be chosen. However, for fixed D, the convergence rates decrease the more I"
approaches dD.

We lastly consider non-smooth domains with corners such as regular polygons although
being not covered by our developed approximation theory. Here we are only able to extract
around 4 ITE digits each with occasional individual improvements. Our final results are
listed in Figure 4.6 for polygonal edges of unit length each. They are obtained by equidistant
computational points without covering any corners and with I" as the circumference scaled
with a factor of 1.5 away from the scattering boundary. Effective convergence of k")
starts for m > 40. The clear loss of accuracy also underlines the quintessence of [16] that
eigenfunctions cannot be locally extended around corners of D at all: While we already
choose the sources as truncating singularities for MFS trial functions relatively close to the
polygons, I is on the other hand constrained to lie disjoint around dD by the discretized
MEFS formulation to simultaneously avoid poles along the scattering boundary. In particular,
we conclude that the modified MFS is not well-suited for non-smooth domains.
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[ &=00 e=0.1 £=02 — =03 |
Perturbation Y K S Y
0 3.235703038847477 | 3.611128205541419 | 3.691028926072422 | 4.058250609789813
0.1 3.2763480279118 3.5945609393239 | 3.73942279460228 | 4.07208521966683
0.2 3.38239714(4) 3.61769602(6) 3.807719411(8) 4.127129460(5)
0.3 3.51642(2) 3.69403(2) 3.87530(5) 4.21836(6)

Fig. 4.5 First four approximate real-valued ITEs for the deformed ellipses from (4.38) based
on the modified MFS without counting multiplicity with n = 4. Digits added in parenthesis
underlay computational fluctuations but are expected to be correct as well.

sn0@®

p-gon klgxl ) kg ) k]g ) kg )
triangle | 8.9666(38) | 9.40511(3) | 10.54934(3) | 12.43355(8)
square | 5.47610(8) | 6.10028(3) | 6.18437(4) | 6.65095(0)
pentagon | 4.0556(0) | 4.6715(5) 4.7198 5.5188(4)
hexagon | 3.2562(0) | 3.7745(4) | 3.8132(2) 4.3429(6)

Fig. 4.6 First four approximate real-valued ITEs for regular polygons based on the modi-
fied MFS without counting multiplicity with n = 4. Digits added in parenthesis underlay
computational fluctuations but are expected to be correct as well.

Summing up, the modified MFS is a powerful method to compute ITEs for sufficiently
regular and convex domains D which then often yields better results than current meshing
methods, see for example [29, 47, 54, 62, 92, 99]. Due to calculations in finite arithmetics
though, the intrinsic ill-conditioning of MFS matrices practically limits the theoretical
potential of the modified MFS for larger collocation points and thus the achievable number
of recoverable ITE digits in total.






Chapter 5

Computing interior transmission
eigenvalues of anisotropic and
homogeneous media

In the following we consider the anisotropic version of the ITP from the last chapter which
requires an adapted modified MFS variant due to intrinsically different regularity assumptions
on the eigenfunctions. We revisit many aspects from ITEs of isotropic media, but discover
also fundamentally new phenomena. Our analysis is based on the results of [66] and is as
such partially adopted verbatim without further reference.

5.1 Mathematical framework

From a mathematical point of view, the anisotropic ITP emerges from the PDE setup of
Section 4.1 if the diffusive term Aw = div(Vw) in (4.1) is to undergo directional dependencies
on the wave (gradient) due to small-scale orientations in the material. However, since acoustic
waves are only associated with isotropic media, see [4], a physically correct model suits time-
harmonic electromagnetic scattering of infinitely-long cylinders in 3D. Indeed, polarizations
perpendicular to the cylinder axis will reduce the setup to our upcoming scalar Helmholtz-
type case in two dimensions, see [26, 22].

Anisotropy can formally be expressed by intertwining a corresponding symmetric positive
definite matrix A € R2*2 into the otherwise rotation-invariant PDE whose eigenvalues we
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assume to either fulfill

1 <A, := min (& -AE)
e
|E]=

or

1>A*:= max(&-AE) .
EeC?
&=1

These restrictions on A = [ remind of the two admissible cases for the refractive index
0 < n = const # 1 from the isotropic case which can now be weakened by also allowing for
n = 1. In order to keep consistent with the PDE notation from Section 2.4, cf. (2.16), we
associate a tensorial map A : C'*? — C'*? with A determined by

A(W) = (Zl.lalﬁqLXl,zaﬁ 21,281W+X2,282v§) .
Accordingly, the ITP for anisotropic media reads

Av+kv=0 inD
Agw+nk>w=0 inD

5.1
v=w ondD e

oy =A(Vw)v ondD

and we call wave numbers k € C\{0} with non-trivial solutions v,w € H'(D) ITEs. Note the
improved Sobolev regularity assumptions on v,w in comparison with the ITP for isotropic
media from Section 4.1. Since the resulting PDE system for A = I prevents a transformation
into a fourth order elliptic equation like (4.5) as the highest order operators for v and w differ
now, the eigenproblem analysis requires a different, variational approach. H'(D) turns then
out to provide a feasible Fredholm framework again subject to our initial distinction of A,
and A*, see [25, 28, 71]. In particular, we may consider the weak form of (5.1) given by

/—A(Vw)-V<p+vv.vw+k2nw<p—k2vwdx:0, (5.2)
D

where ¢,y € H'(D) are such that (¢ — y) € H}(D). Our numerical realization of the
modified MFS in the anisotropic case and underlying approximation theory to be developed
should somehow make use of these several subtleties in comparison with isotropic media.
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While the next sections aim at resolving some technical differences, we want to point out
that many ITE facts from Section 4.2 still hold with additional restrictions on A, see [25, 28].

5.2 Boundary approximation theory for computing inte-

rior transmission eigenvalues

As for ITEs in the isotropic case, we want to provide theory for MFS-based boundary
approximation methods subject to anisotropic media which can then be used to update the
modified MFS consistently. We follow the approved structural guidelines from the previous
chapter and start again from a very general trial function perspective.

5.2.1 A general trial function ansatz

Let the constant material parameters n,A be as in the previous section and assume that
D has Lipschitz boundary. On the basis of (2.12), the relaxed regularity assumption on
the scattering domain still allows us to define a well-defined negative trace norm for the
(co-)normal derivative of ITP eigenfunctions v,w € H'(D) via the duality product

(O, ) - / Av(p—Vv-V(pdx:—/ Rvo+Vv-Vode  (5.3)
o)~ Jp b

H™ % (0D),H?

(and similarly for the treatment of A(Vw)V). Here, ¢ € H : (dD) is arbitrary and extendible
to some ¢ € H' (D) thanks to right-invertibility of the trace operator which then induces

= sup (I, 0) ) < ClPll gy

H™2(9D),H? (9D

as refinement of (2.13). Having thus set in which sense approximations of boundary data are
to be understood, we define the admissible set of Trefftz-like trial functions for anisotropic
media by

UA = U UA(K) )

O<arg(k)<%
where for ¥ € C\{0} and fixed n > 0 we set

Ua(x) := {(v,w) € C*(D) x C*(D) : AV+Kk* V=0, AW +nk*w =0} .
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Note that unlike U, the index set of Uy is now larger since we do not have concrete locality
results for ITEs as in the isotropic case any more except for the symmetry relations with
respect to quadrants in the complex plane. The next theorem is then the analogue of
Theorem 1 but requires an independent proof due to necessarily different assumptions on
ITE approximation sequences in Uyg.

Theorem 18. Assume that the sequence {(v(’”),w(’"), K(’")) Ymen C Uy X C with the initial

restrictions on A fulfills for some constant 1 < C < o the following conditions:
1. eigenvalue convergence: k™ — k#0,
2. uniform interior bound: é < (Hv("’) ”il(D) + HW(’”) ||?1‘(D)) < C formlarge enough,

3. vanishing boundary misfit:

(Hv(m)_w(m)H )+H9vv(m)—A(W(m))VH )—>0f0rm—><>°.

H? (0D H™ 2 (D)

Then, the limit k from (i) is an ITE and a subsequence of (v(m),w(’”)) converges weakly in

H'(D) x H'(D) to some eigenfunction pair (v,w).

Proof. Because of the uniform interior bounds with respect to H' (D) we can apply weak
compactness again to show that the limit is indeed a non-trivial eigenfunction with ITE k.
Without relabeling a possibly extracted subsequence, we assume that v(") — v and w(™) — w
in H'(D). Since (v<m>,w(’")) € UA(K(”’)), they are in particular weak solutions of the
following variational equation when testing against ¢, y € H' (D) such that (¢ — y) € H} (D)

/ —A(YW) Vo + Vo) vy (k) ) g — (1)) y iy
D

=/, (A (Vw<m))v — va(m>)(p ds .

Thanks to our asymptotically vanishing boundary data we obtain with (5.3)

/()D (A(Vw™)y — ™) g ds < ”(””H%(au) A (VW) v — 3,y ||H’%(8D) .

As the right-hand side tends to zero for m — oo, we see with (i) that the pair (v,w) indeed
solves (5.2), i.e.

/ —A(VW) -V + Vv-Vy+ nwe — vy de =0 |
JD

In particular, A(Vw)Vv = dyv holds in the sense of H ~2 traces. The fact that (v—w) € H}(D)
follows from the continuity of the trace operator 7 : H'(D) — H 2 (dD) and the evanescent
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Dirichlet data for { (v") —w(™)} o C H'(D) when m — oo. Thus we are left to prove that
(v,w) is non-trivial.

For this purpose we observe that if we had an estimate like (ii) for the weaker L?(D)
norm, i.e.

nint (M )+ 1 ) 0.

m—oo

our eigenfunction candidate (v, w) would immediately be non-trivial by its definition as weak
H'(D)-limit which is compactly embedded in L?(D). Therefore, we assume contrarily that
there exists a subsequence, not relabeled, such that

lim (!“’(M)HI%Z(D)‘F Hw(m)HIZ}(D)) =0, (5.4)

m—oo

which implies that our uniform lower bound from (if) is now completely concentrated on the
gradients, i.e.

2

inint (99 0+ 199

m—seo

)zc>o. (5.5)

Since v™ is a strong solution of the Helmholtz equation with wave number k(™) we may
use integration by parts with y € H' (D) to obtain

/ Vo . Vy dy = / ()29 yr dx + / Iy ds .
D D oD

. 2
By duality and sup,, ||v(’")||H1(D) < C we conclude that also sup,, ||8vv(”’)||H7%<6D) <
With v = ﬁ(’”>, where u(™ = (m) _ w(’”), the above right-hand side then vanishes for
m — oo due to (5.4) and (iii), so we obtain the relation
lim [ V™ .va™ dx=0. (5.6)

m— Jp

For the remainder of the proof we try to find a contradiction to (5.6) by incorporating our
explicit assumptions on the eigenvalues of A. First note that #(™ can also be characterized as
a weak solution of the system

Aqu™ + n(K(’">)2u(’"> = A " 4+ (n—1) (K(’”>)2v<m> inD
ul™ =M M on 9D

A (Vu(’">) v=A (Vv<’") — Vw('")) v ondD
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with identity tensor I : C!*2? — C!*2. Tts variational form reads for y € H'(D)

/1') A(VU™) 4 (A~ 1) (V™)) . Vy dx

( _
5 (5.7
= / (K ((n— 1) — ™) yr dx + /(9 (o™ —A(W™) V) ds .
JD Jaop
Assume first that A, > 1. Choosing y = W™ in (5.7) and taking the limit m — oo, (5.6),

(5.4) and some uniform upper bound on ||W(m D) yield

Mo

0=1lim [ (—A(Va™)+(A-1) (V™)) vil™ dx

m—o Jp

= lim [ (—A(Va™) +(A—1)(Vu™ + V™)) . Ve dx

m—e |
— i _ (m)) _ yyy(m)Y . wiplm)
—nlllgzo D((A 0 (V™) —vu™) . vig™ dx
— 1 _ (m)) . yypm) gy m) .y (0m) _ glm)
—Wlll_r>nm‘/D(A D(Vwi™) . v vul™ . v (v u™) dx
= lim / (A—D)(Vw™) - V™ 1 |V Pdx— Tim | V5" . V™ dx
m—eo | m—eo |
= lim / (A—1)(Vw™) - V™ 1 |Vu | dx
m—eo |
. 112 112
anlg}o((A*_l)HVW( )||L2(D)+||Vu( )HLZ(D))'

Therefore Vw(™ — 0 in L2(D) and since Vu(™) — 0 in L?(D) as well, we may conclude

tim, ([[79) )+ 95 [F2)) =0

m—yoo

which is a contradiction to (5.5) in the case A, > 1. If A* < 1, we first rewrite (5.6), using

symmetry of A, in the following way

0= lim — [ v .val™ dx

m—yoo D
T _ _ (m)Y . ygm)
_,1%1310 D( A+A—=1) (VW) . vi™ dx
— i _ m)Y . yg(m) _ (m)Y . yg(m)
= lim A AV va"™ (A —1) (V™) - va'™ dx

= lim [ —A(Va™) Vv 4 (A —1) (V™). Val™ dx

m—e |
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and observe that a combination of (5.7) with y = 7™ and y = u("), respectively, yields
thanks to (5.4) and the vanishing boundary data

lim [ —A(VZ™) vyl 4 (A~ 1)(Vo) Vit dy

m— | n

=lim [ (1—A) (V™). Vi 4 A(Vu™) . Val™ dx .

m— /D

Putting both equations together gives

— lim [ (1—A)(VE™) . vy (m)Y . yg(m)
0= lim | (1 A) (Vo) vyl 4 A(Vu™) - viat™ dx
. * m 2 m 2
> Jim (1= A9V Fa )+ A T4 )

This again implies that

tim (179 )+ [0 ) =0

m—soo

which also contradicts (5.5) in the case A* < 1. ]

The updated error estimate for ITE defects in terms of approximate eigenfunctions in the
anisotropic case reads:

Lemma 19. Let k be an ITE with eigenfunction pair (v,w) € H' (D) x H'(D) and assume
that (Vv,w) € Ua(x). If

Jpvv—nwwdx

>8>0, (5.8)

Vlz2(p) + Wl 2y

then there exists a constant C > 0 which depends only on the boundary data of (v,w) such
that for admissible (v, w) it holds that

=R, e — AR,
s, _C H2 (D) H 2(dD)
ey <$ (5.9)

Vll2(p) + Wl 2y
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Proof. We compute with (5.3), using symmetry of A,

kz/ v —nwwdx
D
:/ —VAV +wAwdx
D
:/vv-vvdx—/vw-A(vw)dx
D

— o),y @nyatony T <A(VW)V’W>H*%(3D),H%(31)>

:/Vv-Vvdx—/A(VW)~dex—(8‘,\/,{7—@ 1 1
D D H 2(dD),H2(dD)

- / VAT + whsidx 4 (3,7, ) —A(VI)V, W)
D

H3(9D),H? (3D) H™3 (D)1 (ID)

— Oy W>H*% (9D),H? (3D)

— 2 | Sv_ T e
=K (/va nwwdx+ (3, v A(VW)V’V>H*%(8D),H%(80)
—{(dyv, v —w)

H % (0D).H? (D)

Rearranging, we obtain

(k* — Kz)/ w—nwwdx
D

=@ =-A(Va), V>H*% (0D).H? (aD) (v v= W>H*% (9D).H? (3D)

and taking absolute values yields

’(8V17—A(VW)V,V>H7%<8 ”D'+‘avvv )

<NOT =AYy o 17,4

"/ % @p).H} (D)

olP =l

+lowl, -,

H7 (dD)

N +\|avv||2 oo, +H8vv A(vW>vH2

3(ap)

:C\/vaWHZI o v—AVRVE
H2(3D) H2(3D)

where

6::\/\\vu21 Hlowl2 .
H2 (D) H™2(ID)
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Corollary 3 can also be restated in the following way.

Corollary 20. Let conditions (i)—(iii) of Theorem 18 hold for {(v('"),w(’"), K(’")) }mEN C
Uys x C which detects some ITE k. Assume that each eigenfunction pair (v,w) from the
eigenspace of k fulfills

/vtnwzdx;éo (5.10)
D

(or alternatively ||v||iz(D) — n||w||%2(D> # 0 ifk = kr). Then there is a constant C > O which
depends only on the data of corresponding (v,w) such that

) — > |9 — A (Vi) vy
‘kz (K('n))2‘<c\/||v ) T V)Vl

V| 2 + [[wm) l2(0)

5.11)

It would be helpful to derive concrete conditions under which the integral constraint
(5.10) does not vanish similar to Theorem 4. However, since the ITP eigenfunctions v and
w are not representable via their difference in a closed fashion like in (4.4) any more, the
derived proof does not apply in the anisotropic case and a corresponding result remains open.
However, Corollary 5 keeps valid as a consequence of (5.2) choosing ¢ =w and y =V and
taking imaginary parts.

5.2.2 Approaching the method of fundamental solutions’ framework

Again, the abstract results presented so far hold for general boundary approximation methods
of Trefftz-kind to compute ITEs of anisotropic media. Getting more concrete, we want to
refocus on the MFS setting which requires to find the fundamental solution ®4 x of the
operator A4 + nx?I first. Recall that the associated matrix A € R?*2 for the tensor A is
symmetric positive definite so there also exists a unique symmetric positive definite root
A? € R2*2 such that A2A? = A. Therefore we may define the pulled-back scatterer

Dy = g_%D eER?.

The following lemma shows that the anisotropic PDE for w solved within the ITP on D is
equivalent to a pure Helmholtz equation on Dy.

Lemma 21. The function w € H' (D) is a solution of Ayw +nk>w = 0 in D if and only if
its pull-back wy € H'(D,) defined by wy(-) :== W(X% -) solves Awy +nk?wa = 0 on Da.

Likewise, if @ s is the fundamental solution of the Helmholtz equation with wave number
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K\/n, then
~ 1 ~ 1
Dy i = det(A*7)¢ﬁK(A*7 o) (5.12)

solves (Ay +nK2)d>A, vk = 60(+) in the sense of distributions.

Proof. We associate for any ¢ € H} (D) a representative @4 := (p(Av% e) € H} (D). Then
the two PDEs under consideration are connected via

Vwa(xa) - Va(xa) — nk*wa(xa) @a(x4) dxa

[
As in Section 4.3.2, having fixed some source contour I" of class C with |T'| < oo, the

admissible trial function set U4 can now be updated for the MFS by

Uamrs = U Uamrs(K) ,
O<arg(k)<Z%

where we set for k¥ € C\{0}
Unmrs() i= { (7.39) : 7= Dresppa, 9= By e, by (a,b) € L) x LX) }

and

1

e = det (A3 Y (Vxl At o )

according to (5.12). Analogue to Lemma 6, Us prs(k) can be discretized with respect to
increasing sets of source points. Hence we directly proceed with Uy ars to prove density
with respect to ITP eigenfunctions in H'!(D). Note that the difference v — w is by definition
as good as v and w each which thus separates the approximation problem without loss of
regularity unlike in the isotropic case. We start with the analysis for v:
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Theorem 22. Let v € H'(D) be a solution to the Helmholtz equation with wave number
0 <arg(x) < Z. Then there exists a sequence of elements v =@, *‘l—a(m) witha™ € L*(T)
such that v™) — v in H'(D).

Proof. The following proof is inspired by Lemma 2.1 from [25]. Hence we also aim to show
that, for fixed «, the adjoint

h»—>/DCIDK(o—x)h(x)+chI>K(o—x)-Vh(x)dx € LX) (5.13)

(we use V, to relate differentiation to its underlying variables) of the boundary convolution
operator a — @ xra € {v € H'(D): Av+ k?v =0} is injective which would then give the
desired density result. For this we assume that 4 € {v € H'(D) : Av+ k?v =0} is chosen
such that the entire function v defined by the complex-conjugated right-hand side of (5.13)
vanishes along I" while inheriting the Sommerfeld radiation condition from @ and V,®y.
By analyticity and uniqueness of radiating exterior Helmholtz solutions for Im(x) > 0, see
[72, 32], we conclude that vpc = 0 and by regularity properties of the underlying potential
LAS H(} (D). Since h solves the Helmholtz equation in a weak sense with respect to K by
assumption, this implies on the one hand

/—Vh-Vv+1<2hvdx=0.
D

On the other hand, we can find a sequence {h(m) }meN C 2(R?) such that "™ — hin H'(D).
Now we compute, using integration by parts without boundary contributions as well as the
fundamental solution property of the kernel @

/ —Vh-Vv+ K2h dx
D

=lim [ —VA"™.Vv+ k*h"ydx
m—eo Jp2
=1im | v(A+Kk*)h™ dx
m—oo JR2
“nS Jee ( | ®elx=3)h) + V,@(x =) Vi() dy) (A-+1%)hl" (x) dx
= lim ( / / D (x — y)h(y) dy (A+ k2" (x) dx
m—yoo JR2.JD

- ./Rz /D V. @y (x—y) - VA(y)dy (A+ K?)h™ (x) dx)
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m—o0

= lim (/RZ/DCI)K(x—y)h(y)dy(A—I— Kz)ﬁ(m(x)dx
+ [, [ @ctx=y)Vil)ay-(a+ Kz)Vh(”’)(x)dx)

—tim [ (A1) /D Dy (x — y)h(y) dyh™ (x) dx

m—oo R
+ /R (At i) /D B (x—y)VA(y) dy- VA (x) dx

=1lim [ (Lph)h™ + (1pVh)-VA™ dx

m—yoo 2

=g py -
Hence || 4[| 1 (py = O which in turn implies injectivity of (5.13). O

The complementing density proof for the approximation of w with corresponding trial
functions in Uy prs can be inherited from the results of v by a pull-back argument.

Corollary 23. Let w € H'(D) be a solution to Agw + k*w = 0 with wave number 0 <
arg(x) < 7. Then for there exists Wi =y *|r b with b € L2(T) such that w™ — w
in H'(D).

Proof. For any solution w € H'(D) of Ayw + k*w = 0 we know by Lemma 21 that wy :=
W(X% 0) e H! (Dy) solves Awg + k2w4 = 0 on D4. We also associate a surrounding source
boundary with the pulled-back scatterer Dy by ['4 := A~3T. Then Theorem 22 guarantees

existence of a sequence { gg")} € L?(T4) such that the functions

meN

Wi = | @(o—sa)gf" (sa) dsa
Ta
fulfill wi\m) — wa in H'(Dy). Using the transformation formula for curvilinear coordinates,
e.g. [46], X”) can also be expressed in terms of &4 , according to

w™ (x4

= - CI)K(fosA)gf(“m)(sA) dSA
A

~_1

:/CI>,<(foX*%s g/ (A 25)|A 2 v|det(A2) ds
JIT

)
- r'(det(A*z)q%(xA_ms)) (" (A 45)]AHv]) as
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for every x4 € D4, where we set g< >(s) = ( ) (A’fs }A 2 v| for the transformed coefficient
functions. Therefore, w(™ ( ) tlsﬁes

(m - |2
HWA WA‘ H(Dy)

W [, s

(ST

= [ det(A ) 0o —wa) (A 2) = [ der(A)| (V! = Viw) (A2 ax
— det(A2 )</ e dx+/ (V™) —vw)Az|? dx>
> det(A) min {1, f}(/\w —wf?ar [ (7wl w)\%u)
= det(A~4) min {1 /A W = w3,
L]

With the same pull-back argument as in the proof above, the convergence rate analysis
from Section 4.3.3, especially Theorem 16, takes over to the anisotropic case yet with
different source contours I', = dBg(0) and I, = g’%l“v for v and w, respectively, provided
the eigenfunction pair (v,w) is known to be more regular than in H'(D) x H'(D). The
original case when I' =T, =I'},, will only be investigated numerically in the sequel for which
we state the next corollary as a summary of this subsection.

Corollary 24. Let k be any ITE with 0 < arg(k) < 7. Then there exist MFS trial functions
{(v<m),w(’”)7 K(’")) }mEN € Up mrs % C such that (i)-(iii) from Theorem 18 are satisfied.

Proof. The assertion follows by setting k(") = k and k" = y/nk in Theorem 22 and Corol-
lary 23, respectively. L

5.3 The modified method of fundamental solutions from a

numerical perspective

In virtue of the different assumptions on ITP eigenfunctions for isotropic and anisotropic
media, we have provided individual approximation setups each that remain to be implemented
numerically for the latter. After establishing corresponding modified MFS version, we will
use it to compute exemplary ITEs and particularly focus on new phenomena arising in
comparison with the isotropic case.
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5.3.1 Implementation details

We aim to adapt the modified MFS algorithm as presented in Subsection 4.4.1 to anisotropic
media. Our numerical guidelines should likewise reflect a synthesis of Theorem 18 and
Lemma 19 to have a reliable basis for the proposed computation routine. Hence, recall
that the purpose of the introduced modified MFS matrix M(x) is to store both boundary
collocation and interior data from admissible ITP trial functions which need to be optimized
in a further step to give a sufficiently small ratio. However, the actual norms required in
conditions (ii) and (iii) of Theorem 18 are different from those in Theorem 8. In practice,
we take as usual a variable number of collocation points {x“*””, ... ,x(’""”)} C dD, sources
{s(lm, .. 7s(’”*’”)} C I' along some admissible contour I" surrounding D and fixed random
indicator points {55(17@, . ,x(’a*’m} € D. Then we set

B Ba(yaK)
VB(x)v A(VBa(y/nk))v
1(x) 0
M(x) = 3;%2 8 , (5.14)
0 Iy (V/nK)
0 A Ix(v/nk)
0 Dala(y/nK)

where the boundary matrices in the first two block lines are given by (3.4) and (3.5), re-
spectively. Recall that in this form, they still circumvent the abstract fractional Sobolev
norms from (iif) of Theorem 18 similar to (4.34), so the characteristically higher regularity
of eigenfunctions in the anisotropic case should at least be numerically reflected now by
some consistent implementation of the refined interior bounds (if). Therefore, we have added
to 1(x) and I, (k) in (5.14) also gradient contributions of corresponding MFS trial functions,

ie.
3,-<1>T,K(x(1/za) — S(l/m)) o 3;‘1>T,K(x<l/’ﬁ> _ s(m/m))
aifT(K') = e (Crﬁxm ,
8,-(1>T7K(x(rﬁ/r7t) — S(l/m)) o aiq)T’K(x(iﬁ/lﬁ) _ s(m/m))
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for i = 1,2. Our proposed modified MFS for anisotropic media is then obtained as in Figure

3.5 by performing a QR factorization of M(x)

0Os(K)

M(x) = Q(K)R(x) = ( o

) R(k), R(x),Qp(K) € C"*2"

and extracting local minimizers k") € C\{0} of

K> Opin(K) = min  |Qp(x)N].
neC n|=1

5.3.2 Numerical results

Since there are only few other works addressing the numerics of ITEs for anisotropic media
so far, see [26], we want to apply the modified MFS in that context, too. We would like
to go a bit further and focus more closely on the two cases A, > 1 and A* < 1 which will
turn out to be significantly different instead of only disjoint auxiliary situations for technical
reasons. To see this, let us confine to the real-valued ITE spectrum for simplicity, fix n = 4
and assume first that A = af with a € {0.99,1.0,1.01} is pseudo-anisotropic, i.e. we perturb
the homogeneous isotropic case (4.3), where a = 1, slightly from below and above by a
scalar factor. Figure 5.1 was generated for D being the unit disc with m = 20 sources and
collocation points each lying equidistantly on concentric circles of radius 5 and 1, respectively.
Supplementarily, we take m = 10 indicator points randomly in the interior. As evanescent
valleys of the smallest-singular-value-function shall indicate existence of nearby ITEs, the
plot already shows that while the trivial ITE k = 0 keeps uniformly isolated for a < 1, there
seems to be an accumulation of eigenvalues around zero if a > 1, consisting of 9 ones so far.
Since the ITP is rotationally symmetric for any a > 0, we may again compute eigenvalues
analytically using a Fourier-Bessel expansion, see [20]. Accordingly, we need to solve

J,(x J Ty
et P/( ) P ( ) a )n =0 ,
KJ,(x) /nakl, (/%)
whose roots in k¥ coincide with those of

gp(K,a) :fp(K)—M, (5.15)
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Fig. 5.1 Different ITE behavior for the unit disc D near K = 0 with parameters m = 20, n =4
and A* = A, = a being slightly larger or smaller than 1, respectively.

where

Numerical calculations then confirm for a = 1.01 the existence of at least 24 ITEs, almost
equidistantly distributed, within the interval (0,2) as the consecutive smallest positive roots
kyofg,forp=1,...,24:

0.115311585535849, 0.199588421652397, 0.282144281238904, 0.364146487789215,
0.445898824589272, 0.527516720334738, 0.609053860429526, 0.690538657514437,
0.771987575480684, 0.853410820048637, 0.934815057189782, 1.016204826695360,
1.097583327960807, 1.178952881037817, 1.260315209516204, 1.341671620743993,
1.423023124392495, 1.504370512663545, 1.585714415871614, 1.667055341806005,
1.748393704134480, 1.829729843252073, 1.911064041822514, 1.992396536525989.

We now compare these values with each positive root Zp of the second order Taylor polyno-
mial g,,(e,a) of g,(e,a) around zero

a—1 n—a* 5
- . 5.16
a 2a2p(p+1)K (5.16)

gP(Kva) =
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Fig. 5.2 With identical input data as in Figure 5.1 except for a larger number of collocation
points (m = 30) additional minima appear for a = 1.01, while the two exemplary graphs for
a < 1 keep rather unchanged.

The latter was derived via standard recursive differentiation formulas as well as low-argument
asymptotics for Bessel functions, see [1]. Since g,(®,a) is strictly decreasing for a® < n, but
gp(0,a) < 0fora < 1, we get a first idea about why we do not observe ITEs close to zero for
a = 0.99. However, for a > 1 the parabola intersects the k-axis at

n—a2

. 2 _
ky = ¢Mp(p+1), (5.17)

for different p and yields 0.116436686356126, 0.201674256633773, 0.285210468912994
and 1.852038873292762, 1.934391514809814, 2.016742566337728 for our marginal test
samples p = 1,2,3 and p = 22,23,24, respectively. We recognize the almost equidistant
structure of the exact k, consistent with the approximation formula (5.17) which gives rise
to believe that this pattern even continues for larger p. Obviously, the modified MFS does
not point to all of these existent eigenvalues with a local valley for m = 20 yet. Increasing
the number of collocation points to m = 30, we see in Figure 5.2 that successively further,
but still not all minima, especially not those which are more distant from zero, appear within
an acceptable number of collocation points. In fact, for larger m the output deteriorates by
ill-conditioning effects and finally results in noisy artifacts within the graph. We conclude
that the regime a > 1 with n > 1 (or equivalently a < 1 with n < 1) seems to be not well
suited for eigenvalue approximations on the basis of the modified MFS as long as minima of
the smallest-singular-value-function are forced to oscillate strongly. The following lemma
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shows that the situation is even worse for a \ 1 since an accumulation of ITEs around zero
is induced. Our interpretation of this observation is that the eigenspace of k =0 fora =1,
which consists of all harmonic functions v = w, emerges from the collection of eigenstates
that are absorbed by the trivial ITE in the right-hand-side limit of a.

Lemma 25. Fix n > 1. Then for any p € N and any upper threshold x > 0 there exists
ap > 1 such that for all a, > a > 1 there exists a positive root kp 4 of gp(-,a) from (5.15) with
K > kp q. The same holds true for the sign relations n < 1 and a,, < a < 1 correspondingly.

Proof. We will work with n,a > 1 since the proof for the converse case can be performed
in a similar fashion. We will make use of the intermediate value theorem to prove that
the continuous function g, (-,a) switches its sign in the interval (0, k) for sufficiently close
1 < a < ap. For this we first note that by (5.16) we have that

a—1

g(0,a) = >0 (5.18)

a

for all a > 1. We want to show next that g,(k,,a) < 0 for some 0 < k,, < k and for every
1 <a<ap. Since f,(y) = 1+y*/(2p(p+1)) + O(y"**) for y — 0, we can always find an
open interval I, = (0,i,), i, > 0 on which f, is strictly monotonically increasing. For now
we fix 0 < k,, < k such that k,,\/n < i, as well as some 1 < @ < n. Then we set

— mi 5fp(\/%’cp)
ap.—mn{ ’7fp(Kp) }>1.

Hence, for any 1 < a < a,, we get by monotonicity of f,, on I, that

0>fp(Kp)7fP(\/§Kp) >fp(Kp)*fp(\£ng) _

LK)
a gp(a p)

Since K, is independent of a, the intermediate value theorem applies in combination with
(5.18) for all 1 < a < a,, and thereby ensures the existence of roots kj ; > 0. ]

However, despite the different behavior of the eigenvalues for a 1 and a \, | including
their retarded numerical appearance in the latter case with n > 1, it should be noted that
Figures 5.1 and 5.2 also indicate that for any approximate ITE k_ with a < 1 we can find
early, with respect to the number of collocation points, a neighboring ITE k for a > 1 with
the same limit point when both a approach 1: Our exemplary reference pair from the right
corner of the plot is computed by the modified MFS with machine precision and detects the
smallest real-valued ITEs 2.882728798537896 and 2.922641535098038 of the unit disc for
a=0.99 and a = 1.01, respectively, thus surrounding closely ké&l) ~ 2.902608055212766
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Do e =

| b=1.0 5=0.8 b=0.5 —b:0.3|
b | (A11,A2,n) k](Rl) k](RZ) kI(RS) kﬁg)
(178, 1/2, 1) | 2.432342816525 | 2.630469896016 | 3.59558793161 | 3.67772382000
1o (8. 1) | 5422742998449 | 6104903895458 | 6.701155193070 | 6.807186612188
Y TR, 172, 4) | 1.102569011198 | 1.54251886201 | 1.59628152267 | 1.60949290139
(2,8,4) | 1.0943753002121 | 2.6607655055967 | 3.2850748911300 | 4.741801624682
(178,172, 1) | 2.8165335886620 | 2.9285919681719 | 4.07689045702 | 4.29727034976
0 |_28.1) | 6533520997906 | 7.416596066665 | 7.518127550666 | 7.698364095496
(78, 172, &) | 1.2746345105108 | 1.2937710253833 | 1.708033787158 | 1.764558638514
(2,8,4) | 1.0949963906964 | 3.295035558059 | 3.883765024644 | 4.66548759617
(178, 1/2,1) | 4.04671357026 | 4.0805282756 52097578799 | 5.2372873746
05 |28 1) | 10.014688061884 | 10.43413680087 | 10.67428849705 | 11.00440368778
< (IR, 172,4) | 186432077115 | 1.86788372558 | 2.2749471210 | 2.2899879956
(2,8,4) | 1.004252956180 | 2.153141477577 | 3.263881703236 | 3.587938159800
(178,172, 1) 6.3010969 6.3020803 7352124 7361319
03281 16.1836653485 | 162620312417 16317697464 16.50554137
< [(1/8, 172, 4) | 2.94403372897 | 2.94412360374 3.338511006 3.338761087
(2,8,4) | 1.092202884187 | 2.070214109320 | 3.001592773591 | 4.147922758215

Fig. 5.3 First four approximate real-valued ITEs without counting multiplicity for ellipses
with major semi-axis of length 1 and varied minor semi axis b.

for a = 1, see Chapter 4. In particular, the modified MFS is here far more accurate than

the boundary element method from [65] where apparently only 2 digits of their given ITE

approximations are correct.

Due to symmetry of ITEs inherited from

2
k .
aAw+nk*w=0 inD LIGAV‘F%(%) v=0 inD
200 2
Av+k v_—O ng — Aw-f-(%) w=0 inD
v=w on w=v ondD
avv = aavw on aD avw — (l_lavv on aD

it suffices to restrict to n > 1 in the sequel but we assume that either A* < 1 or A, >
1 is sufficiently distant from unity to avoid for the latter the aforementioned eigenvalue
accumulation consequences in practice. Allowing also for A* # A, now, we basically obtain
four different test cases for A in diagonal form. Accordingly, we chose the exemplary 3-tuples
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(A] 1 ,Azz,}’l) from

Material class ‘ (A11,A»,n)

(A <tn=1)] (L50)
(A*>1,n=1) | 2,8,1) (5.19)
(Ac<ln>1)| (35,9
A*>1,n>1) | (2,84)

as representative parameters for our ITE computations and employ again the successively-
deformed test scatterers from Chapter 4 to better retrace the numerical behavior of the
modified MFS. We pick 7 = 10 random interior points each whose precise distribution keeps
numerically irrelevant as before. To compensate the more complex anisotropic structure
of corresponding fundamental solutions, the source points are now either manually fixed
equiangularly on I = dD(S), coinciding with the boundary of a slightly scaled-up scatterer
by a factor S > 1 (i.e. dD(1) = dD), or on outer circles I = dBg(0) with proper radii R. Our
scatterer determine then quite individually if and how to choose S or R, respectively. As
derived from the isotropic case, the larger S or R is, the faster the MFS output is expected
to converge with respect to m up to a certain threshold, but simultaneously ill-conditioning
effects are likely to impede the detection. With these conventions, m in combination with S or
R and modeling parameters given by (5.19) fully describes our modified MFS setup. We start
again with the unit disc interpreted as an ellipse with equal axes and shrink the minor axis b
in y-direction step by step to 0.8, 0.5 and 0.3. Respective results are shown in Figure 5.3 with
m = 30,...,60 and are obtained for R = 5b. We observe that not only the scattering shape
itself influences the numerical accuracy, but also the material parameters. An explanation for
the latter is that the anisotropic parameters enter in our MFS ansatz as inner variations of
the underlying fundamental solution, see (5.12), which, in terms of a pull-back, resembles
spatial evaluations of isotropic radial basis functions along more or less deformed collocation
boundaries.

Next, we focus on the transition from an ellipse to a kite shape parametrized by (4.38)
whose deformation parameter € passes from 0 to 0.3. Figure 5.4 then displays our modified
MES results for these samples and shows that more complex scattering shapes or concave
parts reduce the accuracy of the output as in the isotropic case. It is therefore necessary to
choose a compensating tighter scaling factor for I" with respect to dD again which turns
out to work well for § =2 — ¢. Likewise, the number of collocation points required for
accumulating approximate ITEs increases in comparison with the ellipses and ranges from
about 35 to 80 here. In comparison with Figure 5.3, material parameters do not show
significant effects on the computational output.
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NN N _

| d=0.0 d=0.1 d=0.2 —d:0.3|
&€ (A]],Azz,n) klgal) klg) k]g) klgg)
(178, 12, 1) | 2.8471025260348 | 3.1600761111251 | 3.8992194907200 | 4.0633832879825
0.0 8. 1) | 58I13165368996797 | 6.483618475707658 | 7.70907468441514 | 8.0359270276980
VU8, 172, 4) | 1.25548301224033 | 1.25437465935063 | 1.69500812538264 | 1.75549467161328
(2,8,4) | 1.45615282653635 | 2.7053687255745 | 3.5755403402386 | 5.3469141120703
(178,172, 1) | 2.844832741265 3.175258583036 | 3.894779056630 | 4.09507454531
o1 28D 5.849387560813 6.477010844996 | 7.728576868915 7.99190658583
(U8, 172, 4) | 1.234632318588 1.257786433541 1.699972423624 | 1.762508594273
2,8,4) 1.438716738003 2.694965222759 3.55348405570 5.395815566
(178,172, 1) 2.868977355 3.19024736 3.929439900 4.14548893
oo @381 5.06482555 6.48350477 7.805845131 7.91285541
< Tam 12, 4 1.255163101 1.273766679 1.714003852 1.788830942
2,8, 4) 1.392899663 2.643884081 3.493341629 5.62747817
(178,172, 1) 2.93627 3.2048 4.03421 4.1863
03 28D 6.1597 6.5494 7.8795 7.9617
< (U8, 172, &) 127293 131188 1.73880 1.83879
2.8, 4 1.32210 249773 342292 423398

Fig. 5.4 First four approximate real-valued ITEs without counting multiplicity for the shape
transition ellipse-kite with deformation parameter €.

Finally, in order to see how the method responds to shapes with corners, especially
since Lipschitz boundaries are now included by our theoretical framework unlike for the
isotropic case, we examplarily examine the unit square D = [—0.5,0.5]%>. However, it is
clear at first sight at Figure 5.5 that the modified MFS also lacks accuracy here. Choosing
S = 1.2, we are still able to improve the unit square results from [26] for the smallest ITE
induced by the material parameters (A11,A22,n) = (1/8,1/2,1). It should be noted that m
needs to exceed 100 collocation points here until minimal dips for G, (K‘('")) in the graph
become effectively apparent. Evidently, while approximation theory for the ITP of isotropic
and anisotropic media is technically different, we obtain consistent numerical results when
including additional computational points for the latter to account for the supplementary

degrees of freedom by A.
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(A11,A2,n) k]g) k]g) kﬁs) kg)

(1/8,1/2,1) | 4.386 | 4.845 | 6.615 | 6.646
2,8, 1) 10.036 | 11.14 | 11.60 | 12.32

(1/8,1/2,4) | 1.998 | 2.021 | 2.798 | 2.853
2,8,4) 1.85 492 | 5.14 | 6.11

Fig. 5.5 First four approximate real-valued ITEs without counting multiplicity for the unit
square.



Chapter 6

More applications for the modified
method of fundamental solutions

We extend the modified MFS introduced for the two-dimensional isotropic case in Chapter 4
to the elastic ITP, to piecewise homogeneous media and lastly to three dimensional scatterers,
respectively. Since most of our developed theory can be inherited after solving minor
technical obstacles, we only sketch how to pass from one setup to another. The main focus
will be on numerical implementations and concrete examples to prove broader applicability
of the method as well as revealing model-specific effects.

6.1 The elastic interior transmission problem

The scalar acoustic model from Chapter 4 does not apply any more when vibrations within
isotropic solids D C R? need to be described since they respond to any kind of material
displacements u : D — C? with shear couplings, see [39]. Assuming therefore Hooke’s law

from linear elasticity
o (Vu) =2ue+ Atr(e)l 6.1)

which relates strain £ = (Vu + (Vu)T) /2 and stress © in a tensorial way, corresponding
waves are called elastic and propagate for time-harmonic states according to the Navier

equations

A+ pw’u=0. (6.2)
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Therein, p is a homogeneous material density ratio, w is the vibration frequency and A, it are
constitutive Lamé parameters which are constrained in 2D to fulfill 4 > 0 and 2u +A > 0 in
order to guarantee strong ellipticity of the Navier operator Ag, see [76]. The elastic ITP then
becomes

Asv+@*v=0 inD
Agw+pw*w=0 inD

6.3
v=w ondD (63)

o(Vv)v=0o(Vw)v ondD

and imposes, as before in the isotropic context, the eigenfunction conditions v,w € L?(D, C?)
and (v—w) € H3(D,C?). However, ITEs € C\{0} represent particular frequencies instead
of wave numbers now whose physical unit is formally converted through g, A.

Mathematically, the acoustic and elastic ITP distinguish by the differential operators
involved as well as the range dimensions of their eigenfunctions. Still, they share general
PDE structures and thus enable a common analytical approach for main ITE studies, cf.
[11] and [28]. Numerically, the elastic ITP is less explored, see [52, 84, 100, 101], which is
why we want to present the modified MFS and provide results in that case, too. Our survey
is reproduced from [68] where also underlying approximation theory for C':!-domains D
analogue to Section 4.3 is detailed to justify upcoming calculations.

First of all, we need a proper fundamental solution system for (6.2) whose non-unique
choice should be made carefully. For instance, in Theorem 8 we have seen that radiation
conditions which yield uniqueness of exterior Helmholtz solutions guarantee dense MFS trial
functions independent of the source contour I'. In order to obtain a corresponding result for
the Navier system, we note that by the Helmholtz decomposition, see [73], any entire solution
U = Uy + us can be divided into a longitudinal compressional part #,, and a transversal shear
contribution g which then solve

Ailp+ i, =0 and Aty + K i =0

with wave numbers

2

2 pw
= = 4
K, A t20 and K U (6.4)
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The vector field u is then said to fulfill the 2D Kupradze’s radiation condition if

lim /r (9, — ikpiip) =0 and lim /(0,5 — ikgity) = 0

r—yoo r—roo
uniformly in all angular directions. The radiating fundamental solution system for (6.2) in
the above sense is given by

i
1 (k| o) -1+ 5V TV (HG (ko) — H (k] o))

Q)G7w2 = ﬁ
where I € C?>*? is the identity matrix, see [9]. Recalling that D, 2 adopts all the relevant
scalar operations despite its multidimensional range, see Section 2.4, the modified MFS for
the elastic ITP can be derived as in (4.34) — (4.36) but in terms of block matrices for each
P, p2-evaluation: Selecting for any scatterer D and some accompanying source contour
I the usual m-dependent points {x<1/m>,...,x<m/m>} C dD and {s(l/m), . 7s(’"/’”)} cT,
respectively, as well as {fc(l/ m L xml ﬁ)} C D randomly, the modified MFS matrix reads

Bs(w) Bg(\/ﬁw)
o(VBs(w))v o(VBs(\/pw))v
Is(w) 0
0 Tc(\/ﬁw)

M(w) =

Approximate ITEs w = w™) are then again characterized by making the squared boundary-
restricted unitary part Qp(w) of M(w) sufficiently singular, cf. Figure 3.5.

Based on this, we exemplarily compute ITEs for a disc D, of radius 0.5, for an ellipse
D, with a minor and major semi-axis of length 0.5 and 1, respectively, for a kite-shaped
scatterer Dy defined by setting € = 0.3 in (4.38) and for the unit square D;. We fix the
material parameters

1 1
H=ig *=g> P=4

which were also used in the context of [52]. In particular, we aim at improving the numerical
results from there via the modified MFES in the following. Supplementarily, we take the
source boundaries I'y =2-9D,; ,I. =1.9-9D, , I, =1.6-9D; ,I'y = 1.3- 9Dy where the
multiplication is understood as scaling with respect to the origin. Both collocation and source
points are distributed equiangularly on corresponding boundaries while the remaining 7 = 10
interior samples are fixed randomly inside of the domains. With these input arrangements,
Figure 6.1 lists our successfully-refined ITE results in the elastic case and confirms that,
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Shape coﬂg ) mﬂ(ﬁz) a)ﬂ(s) a)ﬂ(;)

disc 1.451304027606383 | 1.704638247023373 | 1.984530256321993 | 2.269112085458542
ellipse | 1.296728136516 1.302785814026 1.540896035208 1.565151107263
kite 0.947 1.047 1.111 1.235

square | 1.3938 1.6182 1.8020 1.9362

Fig. 6.1 First four approximate real-valued ITEs without counting multiplicity for several
scatterers with material parameters L = 1/16, A =1/4, p = 4.

despite the larger matrix size compared to (4.34) for each m due to vector-valued trial
functions, the modified MFS is barely affected by additional range dimensions. It actually
substantiates our numerical observations from Subsection 4.4.2.

6.2 The interior transmission problem for piecewise homo-

geneous media

In many real-world scenarios the scatterer of interest is macroscopically a composition of
different material components, either due to inner pollutions or manufactured structures.
Depending on the modeling resolution required, the constitutive parameters need to be
adapted. In order to make still use of the modified MFS for corresponding ITE computations
which has only been established for constant-coefficient ITPs so far, we investigate the
relaxed isotropic case when either n > 1 or 0 < n < 1 is piecewise constant on D, i.e. the
medium consists of finitely many, say d € N, homogeneous components. Accordingly, we
also partition J¢_; D"/ c Dc D= ¢_, p"?
all D"/ are disjoint, open and connected. We can then apply the modified MFS on each

such that n("/4) .= 1 p(s/a) = const where

D"/4) in the sense that trial functions need to match as smooth as possible across transitional
component boundaries. We will sketch the accompanying mathematical framework for the
2D acoustic ITP from (4.3) with the above restrictions on 7 in the following. For a more
detailed analysis, we refer to the underlying studies in [86] from which we also copy the
numerical results.

First, we point out that material inhomogeneities will be restricted to inner components
which are compactly contained in another one completely, see Figure 6.2. Otherwise, the
global domain regularity necessary for using the trace theorem as in Chapter 4, e.g. Theorem
1, would not be transferable any more to each component due to arising cusps. We thus
assume the existence of a surrounding bulk material given by D1/4) and which encompasses
oD ¢ dD/4) while 9D N IDM D = ¢ for 2 < h < d. We also demand for i # j that either
oD/ N gpli/d) = ¢ or 9D/ N 9D/ is a closed C!!-curve. In particular, meshing of
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r@/41/1)

a/4)
82/

Fig. 6.2 Exemplary piecewise homogeneous scatterer D with bulk D{!/4) that contains
three inner components D2/4) D/ D(#/4) Some compatible pair of source boundaries
necessary for collocation across dD¥/4) are added as dotted circles.

general inhomogeneous scatterers is not possible with our proposed modified MFS scheme
in theory. But since admissible components might henceforth contain voids when separated
from each other, we need to discuss feasible source contour setups in such a case.

As a rule of thumb, MFS trial functions can be obtained by selecting sources in each
connected part of the component’s complement. Note that v still solves an n-independent and
constant-coefficient PDE on D such that approximate eigenfunctions v can be expanded
as before given exterior source points along some IV =T = D", see (4.15). Concerning w,

h/d)

we assign for each D/"/4) component-wise-supported trial functions by

UL/ 1 g0 (/07

Vnlh/d)

o— s(l/lrz,/1/d.r/h°)

) Lsjay 5

where s(/mh/d.r/h€) c p(h/dr/h) for | <[ < m. The latter is a closed non-intersecting source
contour located in the r-th connected component of (D(”/ d))c whose total number we denote
by A for 1 < h < d. By convenience, r = 1 is to label the respective unbounded exterior for
every 1 < h <d so we may in particular set for the bulk r(/d1/1% — v If h¢ > 1 for some
1 < h <d, voids exist in D"/4), Accompanying inner source contours need to be selected
then carefully to make the density proof from Theorem 8 with fixed wave numbers k also
work for multiply connected homogeneous components each, i.e. we downsize [ (k/dr/k)
with r > 1 whenever it is a resonant interior Dirichlet boundary for x to avoid new kind
of spurious ITEs in the end, cf. [96]. Note that the product of Dirichlet eigenvalue times
domain area is scaling-invariant in 2D so sufficiently small inner source contours can always
be found.
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We can now formulate the modified MFS for piecewise homogeneous media: Having
found for some environment of x proper [ 1/d-r/h) with m source points each, we also
choose m collocation points {x<i<j/d*l/’”>, .. 7x(i<j/d=m/m)} if 9D/ N 9dDU/4) £ ¢ for the
ordered indices 0 < i < j < d. Here, we have set D/d) .= D to include the overall domain
boundary, too. In particular, x(0<i/d/m) does not exist as such for any2<jand 1 <I<m
due to our bulk assumption on D/ for example. Finally, we choose as usual random
interior points {ﬂ]/ m . x ’?’)} C D independent of the component decomposition. The

modified MFS matrix then reads

BU/1<0<1/d) (1) BUNOSUd) (T gy BU/1S0<1d) (/517 ) 0
0 BO/A<2/d) (/D)) . BUS/11<2/d) (/T D) ) BU/251<2/d) (\/@Td) )
M(K) L VB(I,/ICO;\I/’II)(K)V VB(I/’I‘.0<1/J‘)< WD)y VB(]C/lC.n<1/1})( D) i)y 0
T 0 VB(I/I‘.I<2/J)( n“/”)l(')v VB(]‘/I‘.I<2/11)( ’1(1/@,{)\, VB(I/Z‘.KZ/J)( n(Z/’”K)V
,71/14)(,() 0
0 T (V7)) 11 (V7)) 129 (V) ) .
(6.5)
where
(1/mh/d,r/h€) (_(i<j/d1/m (m/m.hjd,r[h%) ¢ (i<j/d,1/m
ol (<i<ilda/my gl (<1 /m)
e
Blr/H 7z<1/d)(K) = : .. :
1/m,h/d,r/h¢ i< m/m,h/d,r/h" i<
(p’(c/ /d.r/ )(x(t<j/d,m/m)) (P1<< /mihjd,r/ )(x(1<j/d.m/m))

for either h = i or h = j, and BU/"“i<i/4) (1) = 0 otherwise. Similar definitions apply to
1077 (1) with respect to its interior points and VBU//i<i/4)(1)y so that M(x) contains
many zero blocks, compensating its complex block structure in total. As before, collocation
points are varied column-wise and sources are listed row-wise within M as guiding arrange-
ment. Also, the first block column is linked to v as in (4.34) whereas the other ones are
completely due to w and its different source contour contributions now. Altogether, we are
ready to compute ITEs for piecewise homogeneous media by applying again the modified
MES to (6.5) as depictedd in Figure 3.5.

For this purpose, we want to examine the unit disc scatterer D again but with two different
inner-component configurations, see [86]. The first one should have completely separated
components and is as such indicated by D.,, while the other, Dy, has a corresponding
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Interior

KD @ 1) (4)

Dg

R R R
3.3472649097009 | 3.5339744459219 | 3.8215531039714 40276794096285

Do

2.9695607637622 | 3.8151728473562 | 4.2620616635742 | 4.3612725527356

Fig. 6.3 Visualization of the scatterers D, (left) and D, (right) and listing of the first four

real ITEs without counting multiplicity for n(1/3

) — 4, n/3 =3, 233 =2

concentric composition, cf. Figure 6.3. More concretely, we analyze for d =3

and

/¥ .= By4((05,0)7),
DY) = By3((~0.5,0)T)
e

gg/?’)::Bl(( ))\( /)UD(3/3))

(2/3 — Boa((0,0)7) .
(3/3) := By 3((0, 0)" ),
o = (0.0 N (B2 UDE),

where B, (x) is centered at x = (x1,x;) " € R%. Note that ITEs for Do, can even be computed
exactly via an adapted Fourier-Bessel ansatz, see [42]. For the modified MFS, we choose for

DOO

r/313 .~ 9B4((0,0)7) ,
T3 .= 9By .4((0.5,0)7) ,
/333 .= 9By 3,((~0.5,0)T) ,
T Y = 9B0as((05,0)7)

G310 = 9By 35((—0.5,0)T)
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and for D®

(/2= 9 (0, > N,
§1/32/2 — 9Bous((

((0,0)7)
(2/3 12) .= = dBo4s((0 O)T) :
2/3 2/2 — 9B, 35( ) 7
3/3 l/l ( )

= dBy3s((0, O)T

with § = 1.5 and s = 0.5. Hence, we can readily distribute both m sources and collocation
points each on corresponding circles equidistantly. The complementing interior points are
picked randomly throughout D. The final modified MFS results for n!/3) = 4, n(2/3) =
3, n®3/3) = 2 are then shown in Figure 6.3. Our overall conclusion is that for a moderate
number of inner components, i.e. when d is not too large, ITEs for piecewise homogeneous
media can still be computed very accurately with our proposed method.

6.3 The interior transmission problem in 3D

Having studied in detail the modified MFS with its several ITP modeling scenarios in 2D,
we finally address the problem of computing ITEs for bounded D C R3. For the sake of
simplicity we confine to the homogeneous acoustic case (4.3) and convince ourselves that
the general approximation-theoretical framework introduced in Section 4.3 applies likewise
for 3D scattering configurations after updating dimension-dependent quantities. For instance,
the fundamental solution @37 for the Helmholtz equation with wave number k # 0 which is
radiating in the sense of

lim 2 (3,®3 — ik®¥P) = 0

r—yoo

becomes

iK|e
3D Le [o

T 4m o]

x =

see [25]. Hence, we can directly move forward to numerical aspects of the modified MFS in
3D and discuss the distribution of computational points first. The latter gets more involved
now as ITE approximations proved to be sensitive already in 2D with respect to varying the
distance of source contour to collocation boundary via radial scaling. Since even a further
angular degree of freedom comes into play in 3D, the situation is expected to become only
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Fig. 6.4 Fibonacci lattice on the sphere with 21 points in total from which only the visible
ones in the front side are indicated by black dots.

worse due to the enhanced total number of computational points required. Besides, it is not
possible any more to find for each m equally distributed points on a sphere, cf. Platonic solids
and [88], which turns the ball more asymmetric from a collocation perspective whereas in
2D the disc could be treated most easily via arc length with optimal results, see Figure 4.1.
We will therefore try to examine representatively the smallest real-valued ITE kI(R} ) of the unit
ball D = B;(0) C R? again to get a first feeling for the modified MFS in 3D. We take I to be
a sphere as well but with a larger radius R > 1 so that collocation and source points exhaust
the same kind of concentric surface. We can then employ the Fibonacci lattice from [44] to
have both {x('/”’), e ,x(’"/’")} C dD and {s(l/’"), e ,s(’"/’")} C T selected nearly uniformly
for arbitrary odd m. Figure 6.4 shows the resulting point distribution for m = 21. We also fix
{z/m . xm/mM} € D randomly and can thus build the modified MFS matrix

B®(x)  BP(Vnx)
VB3P (x)v VB3P (\/nx)v
130 (x) 0
0 I3P(y/nx)

M(x) =

with respect to @3P. We are left to minimize & > Gy (k) according to Figure 3.5 for which
the exemplary graph along the real kx-axis based on m = 301, m =20,n =4 and R =5 is
shown in Figure 6.5 (left). From [63] we know that k](Rl) = 7 which is again indicated in
our plot by a neighboring vanishing minimum of the smallest-singular-value function. In
the end, it turns out that decay of Gy, (Kﬂg"")) is significantly slower than its 2D analogon,
cf. Figure 4.1, where m = 30 is already sufficient to compute the smallest real-valued
ITE with machine precision. In contrast, m < 30% in 3D yields only klg) ~ 3.14159 where
the squared collocation number is chosen as comparing surface to curve-type boundaries.

Simultaneously, ill-conditioning effects hinder further improvements, cf. Figure 6.5 (right).



106 More applications for the modified method of fundamental solutions
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Fig. 6.5 Modified MFS applied to the unit ball in 3D with n = 4 for m = 301 (left) and
m = 601 (right) collocation points, respectively. Ill-conditioning artifacts for computing the
smallest singular value start early in comparison with the accuracy of approximate ITEs

which only reveal 3 correct digits for k]g ) = 7 in both cases.

We conclude that in higher dimensions the modified MFS lacks accuracy already for very
easy test scatterers. Our short excursion is to illustrate the necessity of further research
and potential reconsideration of optimization techniques to make the modified MFS more
attractive for eigenvalue computations in 3D.



Chapter 7
Summary and Outlook

This thesis has provided novel numerical and theoretical insights into the ITP for different
wave type models in two dimensions. The mathematical core is guided by the development,
analysis and verification of the modified MFS which is capable of computing complex-valued
ITEs for (piecewise) homogeneous scatterers. The method has proven to be best-suited for
smooth and convex domains (decomposing into at most few material components) whose
boundaries can be reasonably discretized with a moderate number of collocation points. For
instance, 8 correct eigenvalue digits and often more can be calculated readily with less than
60 boundary points for standard scatterers such as ellipses or kite-shapes, beating thus many
alternative methods with regard to accuracy, complexity and convergence rates in practice.
Throughout, tuning parameters and points have been selected manually according to certain
approved criteria, but could alternatively be optimized within an independent pre-process to
further improve our current results.

Concerning computational challenges, all the issues that we have encountered in the
course of establishing the modified MFS were linked to the well-known ill-posedness of
the underlying MFS ansatz. On the one hand, spurious eigenvalues, which are typical for
discretized compact operator equations, could be easily avoided by our algorithm so that
significantly higher accuracy than for the standard MFS is attained as illustrated for the
related yet easier Dirichlet Laplace eigenproblem. Our derived convergence theory for
approximating ITEs via the modified MFS even shows that the resulting error achieves up to
spectral decay depending on the regularity of the scattering boundary. On the other hand, the
attainable accuracy for relatively large collocation numbers is in practice still limited due to
the growing ill-conditioning of the coefficient matrices and their induced error propagation
within the modified MFS algorithm. In particular, 3D applications or complex scattering
boundaries, especially corners, cannot be treated efficiently yet. According to the uncertainty
principle though, i.e. the incompatible interplay of good convergence rates and blowing-up
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condition numbers in the context of interpolation with radial basis functions, only higher
precision updates may handle this intrinsic subtlety completely upon additional numerical
costs.

From a theoretical point of view, the structure of the ITP is non-standard which is why a
novel approximation framework has been set up in terms of general Trefftz-like trial functions.
As such it also yields a spurious-free basis for other boundary collocation methods and takes
into account the usual distinction on isotropic and anisotropic scattering media. Specific for
the modified MFS, we have shown that the whole eigenvalue spectrum can be detected and
proved a posteriori error estimates as well as convergence rates. A natural next step would be
to extend the introduced method with its theory to absorbing media whose refractive indices
then exhibit a dispersive and complex-valued structure. The latter is an important field of
current research with many open questions.
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