000885911 001__ 885911 000885911 005__ 20210130010550.0 000885911 0247_ $$2doi$$a10.3389/fmicb.2020.544045 000885911 0247_ $$2Handle$$a2128/25985 000885911 0247_ $$2altmetric$$aaltmetric:93368139 000885911 0247_ $$2pmid$$apmid:33193127 000885911 0247_ $$2WOS$$aWOS:000587701900001 000885911 037__ $$aFZJ-2020-04175 000885911 082__ $$a570 000885911 1001_ $$0P:(DE-Juel1)171339$$aZhu, Lingfeng$$b0 000885911 245__ $$aRegulation of γ-Aminobutyrate (GABA) Utilization in Corynebacterium glutamicum by the PucR-Type Transcriptional Regulator GabR and by Alternative Nitrogen and Carbon Sources 000885911 260__ $$aLausanne$$bFrontiers Media$$c2020 000885911 3367_ $$2DRIVER$$aarticle 000885911 3367_ $$2DataCite$$aOutput Types/Journal article 000885911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603892160_28240 000885911 3367_ $$2BibTeX$$aARTICLE 000885911 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885911 3367_ $$00$$2EndNote$$aJournal Article 000885911 500__ $$aBiotechnologie 1 000885911 520__ $$aγ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid mainly formed by decarboxylation of L-glutamate and is widespread in nature from microorganisms to plants and animals. In this study, we analyzed the regulation of GABA utilization by the Gram-positive soil bacterium Corynebacterium glutamicum, which serves as model organism of the phylum Actinobacteria. We show that GABA usage is subject to both specific and global regulatory mechanisms. Transcriptomics revealed that the gabTDP genes encoding GABA transaminase, succinate semialdehyde dehydrogenase, and GABA permease, respectively, were highly induced in GABA-grown cells compared to glucose-grown cells. Expression of the gabTDP genes was dependent on GABA and the PucR-type transcriptional regulator GabR, which is encoded divergently to gabT. A ΔgabR mutant failed to grow with GABA, but not with glucose. Growth of the mutant on GABA was restored by plasmid-based expression of gabR or of gabTDP, indicating that no further genes are specifically required for GABA utilization. Purified GabR (calculated mass 55.75 kDa) formed an octamer with an apparent mass of 420 kDa and bound to two inverted repeats in the gabR-gabT intergenic region. Glucose, gluconate, and myo-inositol caused reduced expression of gabTDP, presumably via the cAMP-dependent global regulator GlxR, for which a binding site is present downstream of the gabT transcriptional start site. C. glutamicum was able to grow with GABA as sole carbon and nitrogen source. Ammonium and, to a lesser extent, urea inhibited growth on GABA, whereas L-glutamine stimulated it. Possible mechanisms for these effects are discussed. 000885911 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0 000885911 588__ $$aDataset connected to CrossRef 000885911 7001_ $$0P:(DE-Juel1)128976$$aMack, Christina$$b1 000885911 7001_ $$0P:(DE-Juel1)171825$$aWirtz, Astrid$$b2 000885911 7001_ $$0P:(DE-Juel1)162498$$aKranz, Angela$$b3 000885911 7001_ $$0P:(DE-Juel1)128982$$aPolen, Tino$$b4 000885911 7001_ $$0P:(DE-Juel1)145489$$aBaumgart, Meike$$b5 000885911 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b6$$eCorresponding author 000885911 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2020.544045$$gVol. 11, p. 544045$$p544045$$tFrontiers in microbiology$$v11$$x1664-302X$$y2020 000885911 8564_ $$uhttps://juser.fz-juelich.de/record/885911/files/Zhu%20et%20al%202020%20Front%20Microbiol%20544045%20with%20SI%20%28003%29.pdf$$yRestricted$$zStatID:(DE-HGF)0599 000885911 8564_ $$uhttps://juser.fz-juelich.de/record/885911/files/Zhu_2020_GABA_Autorenversion.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000885911 8564_ $$uhttps://juser.fz-juelich.de/record/885911/files/Zhu%20et%20al%202020%20Front%20Microbiol%20544045%20with%20SI%20%28003%29.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599 000885911 8564_ $$uhttps://juser.fz-juelich.de/record/885911/files/Zhu_2020_GABA_Autorenversion.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510 000885911 909CO $$ooai:juser.fz-juelich.de:885911$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128976$$aForschungszentrum Jülich$$b1$$kFZJ 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171825$$aForschungszentrum Jülich$$b2$$kFZJ 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162498$$aForschungszentrum Jülich$$b3$$kFZJ 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128982$$aForschungszentrum Jülich$$b4$$kFZJ 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145489$$aForschungszentrum Jülich$$b5$$kFZJ 000885911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b6$$kFZJ 000885911 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0 000885911 9141_ $$y2020 000885911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11 000885911 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000885911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2018$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-11 000885911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11 000885911 920__ $$lyes 000885911 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0 000885911 980__ $$ajournal 000885911 980__ $$aVDB 000885911 980__ $$aUNRESTRICTED 000885911 980__ $$aI:(DE-Juel1)IBG-1-20101118 000885911 9801_ $$aFullTexts