000885912 001__ 885912
000885912 005__ 20210208142321.0
000885912 0247_ $$2doi$$a10.1039/D0CE00973C
000885912 0247_ $$2Handle$$a2128/26990
000885912 0247_ $$2altmetric$$aaltmetric:89740200
000885912 0247_ $$2WOS$$aWOS:000583363700007
000885912 037__ $$aFZJ-2020-04176
000885912 082__ $$a540
000885912 1001_ $$0P:(DE-HGF)0$$aRok, Magdalena$$b0$$eCorresponding author
000885912 245__ $$aThe influence of structure on the methyl group dynamics of polymorphic complexes: 6,6′-dimethyl-2,2′-dipyridyl with halo derivatives of benzoquinone acids
000885912 260__ $$aLondon$$bRSC$$c2020
000885912 3367_ $$2DRIVER$$aarticle
000885912 3367_ $$2DataCite$$aOutput Types/Journal article
000885912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611557890_25895
000885912 3367_ $$2BibTeX$$aARTICLE
000885912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885912 3367_ $$00$$2EndNote$$aJournal Article
000885912 500__ $$atemplate des Verlags!
000885912 520__ $$aRecently, interest in organic ferroelectrics or antiferroelectrics representing a metal-free perovskite-type has increased significantly. This interest results from the properties of organic systems. First of all, they do not have toxic metals in their structure. Therefore they are environmentally friendly. Also, the method of preparation, simple syntheses, and low-temperature processability increase their attractiveness in terms of application. In this paper, the above properties are associated with the proton dynamics in organic donor–acceptor systems. We present the comparison of the physicochemical properties of four molecular complexes containing the proton acceptor molecule, 6,6′-dimethyl-2,2′-bipyridyl (66DMBP), and one of three organic acid molecules belonging to the benzoquinone group. As proton donor molecules the organic acids: chloranilic, bromanilic and iodanilic acids have been chosen. We present the results of experiments concerning the determination of crystal structures, 1H NMR, inelastic neutron scattering (INS) and UV/vis spectra. In the theoretical part, we attempt to explain the influence of the crystallization method (a type of solvent) on transoid or cisoid arrangement of 66DMBP. In the theoretical approach, we focus on two forms of the complex with chloranilic acid, α-66DMBP·CLA and β-66DMBP·CLA, which undergo solid-to-solid phase transitions, at 380 and 317 K, respectively. We have chosen these examples because the α analogue possesses ferroelectric properties in a wide range of temperatures.
000885912 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000885912 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000885912 588__ $$aDataset connected to CrossRef
000885912 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000885912 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000885912 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000885912 7001_ $$0P:(DE-HGF)0$$aMoskwa, Marcin$$b1
000885912 7001_ $$0P:(DE-HGF)0$$aDopieralski, Przemysław$$b2
000885912 7001_ $$0P:(DE-HGF)0$$aMedycki, Wojciech$$b3
000885912 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b4$$ufzj
000885912 7001_ $$0P:(DE-HGF)0$$aBator, Grażyna$$b5
000885912 773__ $$0PERI:(DE-600)2025075-7$$a10.1039/D0CE00973C$$gVol. 22, no. 41, p. 6811 - 6821$$n41$$p6811 - 6821$$tCrystEngComm$$v22$$x1466-8033$$y2020
000885912 8564_ $$uhttps://juser.fz-juelich.de/record/885912/files/d0ce00973c.pdf
000885912 8564_ $$uhttps://juser.fz-juelich.de/record/885912/files/zamponi_Rok.pdf$$yPublished on 2020-09-09. Available in OpenAccess from 2021-09-09.
000885912 909CO $$ooai:juser.fz-juelich.de:885912$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000885912 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000885912 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000885912 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000885912 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000885912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b4$$kFZJ
000885912 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000885912 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000885912 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000885912 9141_ $$y2020
000885912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTENGCOMM : 2018$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2019-12-20$$wger
000885912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2019-12-20$$wger
000885912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000885912 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-20$$wger
000885912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000885912 920__ $$lyes
000885912 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000885912 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000885912 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000885912 980__ $$ajournal
000885912 980__ $$aVDB
000885912 980__ $$aUNRESTRICTED
000885912 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000885912 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000885912 980__ $$aI:(DE-588b)4597118-3
000885912 9801_ $$aFullTexts