001     885922
005     20230111074318.0
024 7 _ |a 10.1242/dmm.044651
|2 doi
024 7 _ |a 1754-8403
|2 ISSN
024 7 _ |a 1754-8411
|2 ISSN
024 7 _ |a 2128/27742
|2 Handle
024 7 _ |a altmetric:98000838
|2 altmetric
024 7 _ |a 33093066
|2 pmid
024 7 _ |a WOS:000606733500006
|2 WOS
037 _ _ |a FZJ-2020-04178
082 _ _ |a 570
100 1 _ |a Liebenstund, Lisa
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Predicting experimental success: A retrospective case-control study using the rat intraluminal thread model of stroke
260 _ _ |a Cambridge
|c 2020
|b Company of Biologists Limited
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620291535_24835
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The poor translational success rate of preclinical stroke research may partly be due to inaccurate modelling of the disease. We provide data on transient middle cerebral artery occlusion (tMCAO) experiments, including detailed intraoperative monitoring to elaborate predictors indicating experimental success (ischemia without occurrence of confounding pathologies). The tMCAO monitoring data (bilateral cerebral blood flow, CBF; heart rate, HR; and mean arterial pressure, MAP) of 16 animals with an ‘ideal’ outcome (MCA-ischemia), and 48 animals with additional or other pathologies (subdural haematoma or subarachnoid haemorrhage), were checked for their prognostic performance (receiver operating characteristic curve and area under the curve, AUC). Animals showing a decrease in the contralateral CBF at the time of MCA occlusion suffered from unintended pathologies. Implementation of baseline MAP, in addition to baseline HR (AUC, 0.83, 95% c.i. 0.68 to 0.97), increased prognostic relevance (AUC, 0.89, 95% c.i. 0.79 to 0.98). Prediction performance improved when two additional predictors referring to differences in left and right CBF were considered (AUC, 1.00, 95% c.i. 1.0 to 1.0). Our data underline the importance of peri-interventional monitoring to verify a successful experimental performance in order to ensure a disease model as homogeneous as possible.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Coburn, Mark
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fitzner, Christina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Willuweit, Antje
|0 P:(DE-Juel1)144347
|b 3
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 4
|u fzj
700 1 _ |a Liu, Jingjin
|0 P:(DE-Juel1)180513
|b 5
|u fzj
700 1 _ |a Veldeman, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Höllig, Anke
|0 0000-0001-6798-5703
|b 7
|e Corresponding author
773 _ _ |a 10.1242/dmm.044651
|g p. dmm.044651 -
|0 PERI:(DE-600)2451104-3
|n 12
|p dmm044651
|t Disease models & mechanisms
|v 13
|y 2020
|x 1754-8411
856 4 _ |u https://juser.fz-juelich.de/record/885922/files/dmm044651.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885922
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180513
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIS MODEL MECH : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21