000885930 001__ 885930
000885930 005__ 20210130010551.0
000885930 0247_ $$2doi$$a10.3390/cryst10060437
000885930 0247_ $$2Handle$$a2128/26008
000885930 0247_ $$2WOS$$aWOS:000554685500001
000885930 037__ $$aFZJ-2020-04186
000885930 082__ $$a540
000885930 1001_ $$0P:(DE-HGF)0$$aBussmann-Holder, Annette$$b0$$eCorresponding author
000885930 245__ $$aUnconventional Co-Existence of Insulating Nano-Regions and Conducting Filaments in Reduced SrTiO3: Mode Softening, Local Piezoelectricity, and Metallicity
000885930 260__ $$aBasel$$bMDPI$$c2020
000885930 3367_ $$2DRIVER$$aarticle
000885930 3367_ $$2DataCite$$aOutput Types/Journal article
000885930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604300950_25312
000885930 3367_ $$2BibTeX$$aARTICLE
000885930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885930 3367_ $$00$$2EndNote$$aJournal Article
000885930 520__ $$aDoped SrTiO3 becomes a metal at extremely low doping concentrations n and is even superconducting at n < 1020 cm−3, with the superconducting transition temperature adopting a dome-like shape with increasing carrier concentration. In this paper it is shown within the polarizability model and from first principles calculations that up to a well-defined carrier concentration nc transverse optic mode softening takes place together with polar nano-domain formation, which provides evidence of inhomogeneity and a two-component type behavior with metallicity coexisting with polarity. Beyond this region, a conventional metal is formed where superconductivity as well as mode softening is absent. For n ≤ nc the effective electron-phonon coupling follows the superconducting transition temperature. Effusion measurements, as well as macroscopic and nanoscopic conductivity measurements, indicate that the distribution of oxygen vacancies is local and inhomogeneous, from which it is concluded that metallicity stems from filaments which are embedded in a polar matrix as long as n ≤ nc.
000885930 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000885930 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000885930 588__ $$aDataset connected to CrossRef
000885930 7001_ $$0P:(DE-HGF)0$$aKeller, Hugo$$b1
000885930 7001_ $$0P:(DE-HGF)0$$aSimon, Arndt$$b2
000885930 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b3
000885930 7001_ $$0P:(DE-HGF)0$$aRoleder, Krystian$$b4
000885930 7001_ $$0P:(DE-HGF)0$$aSzot, Krzysztof$$b5
000885930 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst10060437$$gVol. 10, no. 6, p. 437 -$$n6$$p437$$tCrystals$$v10$$x2073-4352$$y2020
000885930 8564_ $$uhttps://juser.fz-juelich.de/record/885930/files/crystals-10-00437-v2.pdf$$yOpenAccess
000885930 8564_ $$uhttps://juser.fz-juelich.de/record/885930/files/crystals-10-00437-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885930 909CO $$ooai:juser.fz-juelich.de:885930$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b3$$kFZJ
000885930 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000885930 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000885930 9141_ $$y2020
000885930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000885930 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2018$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885930 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000885930 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000885930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000885930 920__ $$lyes
000885930 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000885930 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000885930 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000885930 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000885930 980__ $$ajournal
000885930 980__ $$aVDB
000885930 980__ $$aUNRESTRICTED
000885930 980__ $$aI:(DE-Juel1)PGI-1-20110106
000885930 980__ $$aI:(DE-Juel1)IAS-1-20090406
000885930 980__ $$aI:(DE-82)080009_20140620
000885930 980__ $$aI:(DE-82)080012_20140620
000885930 9801_ $$aFullTexts