000885961 001__ 885961
000885961 005__ 20240711085638.0
000885961 0247_ $$2doi$$a10.1039/D0CP03264F
000885961 0247_ $$2ISSN$$a1463-9076
000885961 0247_ $$2ISSN$$a1463-9084
000885961 0247_ $$2Handle$$a2128/26181
000885961 0247_ $$2pmid$$apmid:33112301
000885961 0247_ $$2WOS$$aWOS:000588601200015
000885961 037__ $$aFZJ-2020-04192
000885961 082__ $$a540
000885961 1001_ $$00000-0002-4992-0823$$aFalkenstein, Andreas$$b0$$eCorresponding author
000885961 245__ $$aA quantitative analysis of two-fold electrical conductivity relaxation behaviour in mixed proton–oxide-ion–electron conductors upon hydration
000885961 260__ $$aCambridge$$bRSC Publ.$$c2020
000885961 3367_ $$2DRIVER$$aarticle
000885961 3367_ $$2DataCite$$aOutput Types/Journal article
000885961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605540465_2434
000885961 3367_ $$2BibTeX$$aARTICLE
000885961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885961 3367_ $$00$$2EndNote$$aJournal Article
000885961 520__ $$aElectrical conductivity relaxation experiments on oxides with three mobile charge carriers, H+, O2− and e−, yield in (de-)hydration experiments kinetic parameters (diffusion coefficients and surface reaction constants). In addition, three amplitude factors are obtained, but they have not been given further consideration because quantitative expressions for their forms are lacking. In this study, the forms of the amplitude factors are derived for a diffusion-limited and a surface-reaction-limited case and a mixed case. In order to demonstrate the benefits of the approach, the electrical conductivity relaxation behaviour of lanthanum tungstate (La5.4WO11.1, LaWO54) was investigated experimentally over the temperature range 923 ≤ T/K ≤ 1223. A switch from two-fold non-monotonic relaxation behaviour at high temperatures to two-fold monotonic behaviour at low temperatures upon hydration was observed. The switch in sign of the fast kinetics' amplitude factor can be assigned to the electrochemical mobility of protons surpassing the electron–hole mobility with decreasing temperature.
000885961 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000885961 588__ $$aDataset connected to CrossRef
000885961 7001_ $$00000-0001-7721-4128$$aDe Souza, Roger A.$$b1
000885961 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b2
000885961 7001_ $$0P:(DE-HGF)0$$aMartin, Manfred$$b3
000885961 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP03264F$$gp. 10.1039.D0CP03264F$$n43$$p25032-25041$$tPhysical chemistry, chemical physics$$v22$$x1463-9084$$y2020
000885961 8564_ $$uhttps://juser.fz-juelich.de/record/885961/files/d0cp03264f-1.pdf$$yRestricted
000885961 8564_ $$uhttps://juser.fz-juelich.de/record/885961/files/Article.pdf$$yPublished on 2020-10-28. Available in OpenAccess from 2021-10-28.
000885961 8564_ $$uhttps://juser.fz-juelich.de/record/885961/files/Article.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-10-28. Available in OpenAccess from 2021-10-28.
000885961 909CO $$ooai:juser.fz-juelich.de:885961$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b2$$kFZJ
000885961 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000885961 9141_ $$y2020
000885961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885961 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-10$$wger
000885961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-10$$wger
000885961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000885961 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000885961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000885961 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885961 9801_ $$aFullTexts
000885961 980__ $$ajournal
000885961 980__ $$aVDB
000885961 980__ $$aUNRESTRICTED
000885961 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885961 981__ $$aI:(DE-Juel1)IMD-2-20101013