000885964 001__ 885964
000885964 005__ 20210130010553.0
000885964 0247_ $$2doi$$a10.1523/JNEUROSCI.0897-20.2020
000885964 0247_ $$2Handle$$a2128/26382
000885964 0247_ $$2altmetric$$aaltmetric:92381819
000885964 0247_ $$2pmid$$apmid:33046545
000885964 0247_ $$2WOS$$aWOS:000591200900004
000885964 037__ $$aFZJ-2020-04195
000885964 082__ $$a610
000885964 1001_ $$0P:(DE-HGF)0$$aMartens, L.$$b0$$eCorresponding author
000885964 245__ $$aLocalized prediction of glutamate from whole-brain functional connectivity of the pregenual anterior cingulate cortex
000885964 260__ $$aWashington, DC$$bSoc.$$c2020
000885964 3367_ $$2DRIVER$$aarticle
000885964 3367_ $$2DataCite$$aOutput Types/Journal article
000885964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607364580_29357
000885964 3367_ $$2BibTeX$$aARTICLE
000885964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885964 3367_ $$00$$2EndNote$$aJournal Article
000885964 520__ $$aLocal measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
000885964 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000885964 7001_ $$0P:(DE-HGF)0$$aKroemer, N. B.$$b1
000885964 7001_ $$0P:(DE-HGF)0$$aTeckentrup, V.$$b2
000885964 7001_ $$0P:(DE-HGF)0$$aColic, L.$$b3
000885964 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b4$$ufzj
000885964 7001_ $$0P:(DE-HGF)0$$aLi, M.$$b5
000885964 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.0897-20.2020$$n47$$p9028-9042$$tThe journal of neuroscience$$v40$$x0270-6474$$y2020
000885964 8564_ $$uhttps://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf$$yPublished on 2020-11-18. Available in OpenAccess from 2021-05-18.
000885964 8564_ $$uhttps://juser.fz-juelich.de/record/885964/files/Martens_etal_Journal%20of%20Neurosci_2020.pdf$$yPublished on 2020-11-18. Available in OpenAccess from 2021-05-18.
000885964 8564_ $$uhttps://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-11-18. Available in OpenAccess from 2021-05-18.
000885964 909CO $$ooai:juser.fz-juelich.de:885964$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885964 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2018$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2018$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-10
000885964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000885964 9141_ $$y2020
000885964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b4$$kFZJ
000885964 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000885964 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000885964 980__ $$ajournal
000885964 980__ $$aVDB
000885964 980__ $$aUNRESTRICTED
000885964 980__ $$aI:(DE-Juel1)INM-1-20090406
000885964 9801_ $$aFullTexts