Home > Publications database > Localized prediction of glutamate from whole-brain functional connectivity of the pregenual anterior cingulate cortex > print |
001 | 885964 | ||
005 | 20210130010553.0 | ||
024 | 7 | _ | |a 10.1523/JNEUROSCI.0897-20.2020 |2 doi |
024 | 7 | _ | |a 2128/26382 |2 Handle |
024 | 7 | _ | |a altmetric:92381819 |2 altmetric |
024 | 7 | _ | |a pmid:33046545 |2 pmid |
024 | 7 | _ | |a WOS:000591200900004 |2 WOS |
037 | _ | _ | |a FZJ-2020-04195 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Martens, L. |b 0 |e Corresponding author |
245 | _ | _ | |a Localized prediction of glutamate from whole-brain functional connectivity of the pregenual anterior cingulate cortex |
260 | _ | _ | |a Washington, DC |b Soc. |c 2020 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1607364580_29357 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information. |
536 | _ | _ | |0 G:(DE-HGF)POF3-571 |a 571 - Connectivity and Activity (POF3-571) |c POF3-571 |f POF III |x 0 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kroemer, N. B. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Teckentrup, V. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Colic, L. |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)131701 |a Palomero-Gallagher, Nicola |b 4 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Li, M. |b 5 |
773 | _ | _ | |0 PERI:(DE-600)1475274-8 |a 10.1523/JNEUROSCI.0897-20.2020 |n 47 |p 9028-9042 |t The journal of neuroscience |v 40 |x 0270-6474 |y 2020 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf |y Published on 2020-11-18. Available in OpenAccess from 2021-05-18. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885964/files/Martens_etal_Journal%20of%20Neurosci_2020.pdf |y Published on 2020-11-18. Available in OpenAccess from 2021-05-18. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf?subformat=pdfa |x pdfa |y Published on 2020-11-18. Available in OpenAccess from 2021-05-18. |
909 | C | O | |o oai:juser.fz-juelich.de:885964 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)131701 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0530 |2 StatID |a Embargoed OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b J NEUROSCI : 2018 |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)9905 |2 StatID |a IF >= 5 |b J NEUROSCI : 2018 |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0320 |2 StatID |a DBCoverage |b PubMed Central |d 2020-01-10 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2020-01-10 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|