001     885964
005     20210130010553.0
024 7 _ |a 10.1523/JNEUROSCI.0897-20.2020
|2 doi
024 7 _ |a 2128/26382
|2 Handle
024 7 _ |a altmetric:92381819
|2 altmetric
024 7 _ |a pmid:33046545
|2 pmid
024 7 _ |a WOS:000591200900004
|2 WOS
037 _ _ |a FZJ-2020-04195
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Martens, L.
|b 0
|e Corresponding author
245 _ _ |a Localized prediction of glutamate from whole-brain functional connectivity of the pregenual anterior cingulate cortex
260 _ _ |a Washington, DC
|b Soc.
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1607364580_29357
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
536 _ _ |0 G:(DE-HGF)POF3-571
|a 571 - Connectivity and Activity (POF3-571)
|c POF3-571
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Kroemer, N. B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Teckentrup, V.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Colic, L.
|b 3
700 1 _ |0 P:(DE-Juel1)131701
|a Palomero-Gallagher, Nicola
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Li, M.
|b 5
773 _ _ |0 PERI:(DE-600)1475274-8
|a 10.1523/JNEUROSCI.0897-20.2020
|n 47
|p 9028-9042
|t The journal of neuroscience
|v 40
|x 0270-6474
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf
|y Published on 2020-11-18. Available in OpenAccess from 2021-05-18.
856 4 _ |u https://juser.fz-juelich.de/record/885964/files/Martens_etal_Journal%20of%20Neurosci_2020.pdf
|y Published on 2020-11-18. Available in OpenAccess from 2021-05-18.
856 4 _ |u https://juser.fz-juelich.de/record/885964/files/Kroemer_etal_2020_JNeurosci_Localized_prediction_glutamate_accepted_version_postprint.pdf?subformat=pdfa
|x pdfa
|y Published on 2020-11-18. Available in OpenAccess from 2021-05-18.
909 C O |o oai:juser.fz-juelich.de:885964
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131701
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0530
|2 StatID
|a Embargoed OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J NEUROSCI : 2018
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b J NEUROSCI : 2018
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2020-01-10
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21