000885969 001__ 885969
000885969 005__ 20240711085620.0
000885969 0247_ $$2Handle$$a2128/26064
000885969 037__ $$aFZJ-2020-04200
000885969 041__ $$aEnglish
000885969 1001_ $$0P:(DE-Juel1)177015$$aOdenwald, Philipp$$b0$$eCorresponding author$$ufzj
000885969 1112_ $$aBatterieforum Deutschland 2020$$cBerlin$$d2020-01-22 - 2020-01-24$$wGermany
000885969 245__ $$aSuperior sintering behavior and ionic conductivity: Facile coating methods for improved electrolyte materials
000885969 260__ $$c2020
000885969 3367_ $$033$$2EndNote$$aConference Paper
000885969 3367_ $$2BibTeX$$aINPROCEEDINGS
000885969 3367_ $$2DRIVER$$aconferenceObject
000885969 3367_ $$2ORCID$$aCONFERENCE_POSTER
000885969 3367_ $$2DataCite$$aOutput Types/Conference Poster
000885969 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1604590034_5031$$xAfter Call
000885969 520__ $$aObjective:Solid-state batteries are intensively investigated as a disruptive energy storage technology. Oxide and phosphate-based Li-ion conductors such as Li1.5Al0.5Ti1.5(PO4)3 (LATP) and Li6.45La3Zr1.6Ta0.4Al0.05O12 (LLZ) show properties like improved safety and electrochemical stability compared to incumbent Li-ion battery technologies, but also require treatment at elevated temperatures. We present advanced processing methods for these ceramic electrolyte materials. By applying various surface coatings on electrolyte particles and electrode-electrolyte interfaces we improved the sintering behavior and the electrode compatibility.Methods:LATP solid electrolyte powder was prepared by solution-assisted solid-state-reaction (SASSR), whereas LLZ was prepared via a solid state reaction. Sintering additives were dispersed along with the oxide-based electrolyte powder to perform screening tests. Further, wet coating methods employing organometallic precursors were developed for powders and planar substrates. The resulting solid electrolyte materials were characterized by X-ray diffraction (XRD), microscopic imaging and conductivity measurements.Results and discussion:A mixture of Al- and B-alkoxide was used to modify the conventional LATP. Phase-pure LATP was confirmed for pellets of modified and unmodified LATP by XRD, and the relative densities after sintering exceeded 90 % for both the modified and unmodified powder. Symmetric cells with the modified LATP-electrolyte and sputtered Au-electrodes showed an improved ionic conductivity at room temperature. Trilithium borate and lithium fluoride were identified as the most effective sintering additives among those investigated in conjunction with LLZ, yielding a relative density of 89 % and improved conductivity compared to conventional LLZ.
000885969 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000885969 7001_ $$0P:(DE-Juel1)177092$$aBauer, Alexander$$b1$$ufzj
000885969 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2$$ufzj
000885969 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3$$ufzj
000885969 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b4$$ufzj
000885969 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000885969 8564_ $$uhttps://juser.fz-juelich.de/record/885969/files/Poster.pdf$$yOpenAccess
000885969 8564_ $$uhttps://juser.fz-juelich.de/record/885969/files/Poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885969 909CO $$ooai:juser.fz-juelich.de:885969$$pdriver$$pVDB$$popen_access$$popenaire
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177015$$aForschungszentrum Jülich$$b0$$kFZJ
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177092$$aForschungszentrum Jülich$$b1$$kFZJ
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b3$$kFZJ
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b4$$kFZJ
000885969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000885969 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000885969 9141_ $$y2020
000885969 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885969 920__ $$lyes
000885969 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885969 9801_ $$aFullTexts
000885969 980__ $$aposter
000885969 980__ $$aVDB
000885969 980__ $$aUNRESTRICTED
000885969 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885969 981__ $$aI:(DE-Juel1)IMD-2-20101013