000885982 001__ 885982
000885982 005__ 20210130010556.0
000885982 0247_ $$2doi$$a10.1103/PhysRevLett.125.187203
000885982 0247_ $$2Handle$$a2128/26009
000885982 0247_ $$2pmid$$apmid:33196220
000885982 0247_ $$2WOS$$aWOS:000583031900003
000885982 0247_ $$2altmetric$$aaltmetric:85734293
000885982 037__ $$aFZJ-2020-04209
000885982 082__ $$a530
000885982 1001_ $$0P:(DE-HGF)0$$aLiu, Shuyuan$$b0
000885982 245__ $$aFerromagnetic Weyl Fermions in Two-Dimensional Layered Electride Gd2C
000885982 260__ $$aCollege Park, Md.$$bAPS$$c2020
000885982 3367_ $$2DRIVER$$aarticle
000885982 3367_ $$2DataCite$$aOutput Types/Journal article
000885982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604301585_25312
000885982 3367_ $$2BibTeX$$aARTICLE
000885982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885982 3367_ $$00$$2EndNote$$aJournal Article
000885982 520__ $$aRecently, two-dimensional layered electrides have emerged as a new class of materials which possess anionic electrons in the interstitial spaces between cationic layers. Here, based on first-principles calculations, we discover a time-reversal-symmetry-breaking Weyl semimetal phase in a unique two-dimensional layered ferromagnetic (FM) electride Gd2C. It is revealed that the crystal field mixes the interstitial electron states and Gd−5d orbitals near the Fermi energy to form band inversions. Meanwhile, the FM order induces two spinful Weyl nodal lines (WNLs), which are converted into multiple pairs of Weyl nodes through spin-orbit coupling. Further, we not only identify Fermi-arc surface states connecting the Weyl nodes but also predict a large intrinsic anomalous Hall conductivity due to the Berry curvature produced by the gapped WNLs. Our findings demonstrate the existence of Weyl fermions in the room-temperature FM electride Gd2C, therefore offering a new platform to investigate the intriguing interplay between electride materials and magnetic Weyl physics.
000885982 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000885982 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000885982 7001_ $$0P:(DE-HGF)0$$aWang, Chongze$$b1
000885982 7001_ $$0P:(DE-HGF)0$$aLiu, Liangliang$$b2
000885982 7001_ $$0P:(DE-HGF)0$$aChoi, Jin-Ho$$b3
000885982 7001_ $$0P:(DE-Juel1)180856$$aKim, Hyun-Jung$$b4$$ufzj
000885982 7001_ $$0P:(DE-Juel1)176773$$aJia, Yu$$b5
000885982 7001_ $$0P:(DE-HGF)0$$aPark, Chul Hong$$b6
000885982 7001_ $$0P:(DE-HGF)0$$aCho, Jun-Hyung$$b7$$eCorresponding author
000885982 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.187203$$p187203$$tPhysical review letters$$v125$$x0031-9007$$y2020
000885982 8564_ $$uhttps://juser.fz-juelich.de/record/885982/files/PhysRevLett.125.187203.pdf$$yOpenAccess
000885982 8564_ $$uhttps://juser.fz-juelich.de/record/885982/files/PhysRevLett.125.187203.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885982 909CO $$ooai:juser.fz-juelich.de:885982$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180856$$aForschungszentrum Jülich$$b4$$kFZJ
000885982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176773$$aForschungszentrum Jülich$$b5$$kFZJ
000885982 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000885982 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000885982 9141_ $$y2020
000885982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000885982 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000885982 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885982 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-01-11
000885982 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000885982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000885982 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000885982 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000885982 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000885982 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000885982 980__ $$ajournal
000885982 980__ $$aVDB
000885982 980__ $$aUNRESTRICTED
000885982 980__ $$aI:(DE-Juel1)IAS-1-20090406
000885982 980__ $$aI:(DE-Juel1)PGI-1-20110106
000885982 980__ $$aI:(DE-82)080009_20140620
000885982 980__ $$aI:(DE-82)080012_20140620
000885982 9801_ $$aFullTexts