001     885982
005     20210130010556.0
024 7 _ |a 10.1103/PhysRevLett.125.187203
|2 doi
024 7 _ |a 2128/26009
|2 Handle
024 7 _ |a pmid:33196220
|2 pmid
024 7 _ |a WOS:000583031900003
|2 WOS
024 7 _ |a altmetric:85734293
|2 altmetric
037 _ _ |a FZJ-2020-04209
082 _ _ |a 530
100 1 _ |a Liu, Shuyuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ferromagnetic Weyl Fermions in Two-Dimensional Layered Electride Gd2C
260 _ _ |a College Park, Md.
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604301585_25312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, two-dimensional layered electrides have emerged as a new class of materials which possess anionic electrons in the interstitial spaces between cationic layers. Here, based on first-principles calculations, we discover a time-reversal-symmetry-breaking Weyl semimetal phase in a unique two-dimensional layered ferromagnetic (FM) electride Gd2C. It is revealed that the crystal field mixes the interstitial electron states and Gd−5d orbitals near the Fermi energy to form band inversions. Meanwhile, the FM order induces two spinful Weyl nodal lines (WNLs), which are converted into multiple pairs of Weyl nodes through spin-orbit coupling. Further, we not only identify Fermi-arc surface states connecting the Weyl nodes but also predict a large intrinsic anomalous Hall conductivity due to the Berry curvature produced by the gapped WNLs. Our findings demonstrate the existence of Weyl fermions in the room-temperature FM electride Gd2C, therefore offering a new platform to investigate the intriguing interplay between electride materials and magnetic Weyl physics.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
700 1 _ |a Wang, Chongze
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Liangliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Choi, Jin-Ho
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kim, Hyun-Jung
|0 P:(DE-Juel1)180856
|b 4
|u fzj
700 1 _ |a Jia, Yu
|0 P:(DE-Juel1)176773
|b 5
700 1 _ |a Park, Chul Hong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cho, Jun-Hyung
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.125.187203
|0 PERI:(DE-600)1472655-5
|p 187203
|t Physical review letters
|v 125
|y 2020
|x 0031-9007
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885982/files/PhysRevLett.125.187203.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885982/files/PhysRevLett.125.187203.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885982
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176773
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2020-01-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2018
|d 2020-01-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21