000885999 001__ 885999
000885999 005__ 20210130010558.0
000885999 0247_ $$2doi$$a10.1029/2019WR026588
000885999 0247_ $$2ISSN$$a0043-1397
000885999 0247_ $$2ISSN$$a0148-0227
000885999 0247_ $$2ISSN$$a1944-7973
000885999 0247_ $$2ISSN$$a2156-2202
000885999 0247_ $$2Handle$$a2128/26043
000885999 0247_ $$2WOS$$aWOS:000595832300021
000885999 037__ $$aFZJ-2020-04221
000885999 082__ $$a550
000885999 1001_ $$00000-0002-5661-1359$$aAndreasen, Mie$$b0$$eCorresponding author
000885999 245__ $$aCosmic Ray Neutron Soil Moisture Estimation Using Physically Based Site‐Specific Conversion Functions
000885999 260__ $$a[New York]$$bWiley$$c2020
000885999 3367_ $$2DRIVER$$aarticle
000885999 3367_ $$2DataCite$$aOutput Types/Journal article
000885999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604500822_19235
000885999 3367_ $$2BibTeX$$aARTICLE
000885999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885999 3367_ $$00$$2EndNote$$aJournal Article
000885999 520__ $$aIn order to advance the use of the cosmic ray neutrons (CRNs) to map soil moisture in heterogeneous landscapes, we need to develop a methodology that reliably estimates soil moisture without having to collect 100+ soil samples for each point along the survey route. In this study, such an approach is developed using physically based modeling with the numerical MCNP neutron transport code. The objective is to determine site‐specific conversion functions to estimate soil moisture from CRNs for the dominant land covers. Here, we assess this methodology at three field sites with similar mineral soil composition, but different land covers. First, we ensure that the developed models capture the most important differences in neutron transport behavior across sites. For this, we use measured time series and height profiles of thermal and epithermal neutrons. Then, we compare the estimates obtained from the site‐specific conversion functions with the standard N0‐calibration function. Finally, we compare the CRN soil moisture estimates with independent soil moisture estimates. Overall, the site‐specific models are in agreement with the observed trends in neutron intensities. The site‐specific soil moisture is similar to the N0‐estimated soil moisture, which results in comparable statistical measures. We show that various land covers have a significant impact on the amount and soil moisture sensitivity of epithermal neutrons, while the thermal neutrons are affected to a less degree. Thereby, thermal‐to‐epithermal neutron ratios can be used to identify the land cover type and thereby the appropriate conversion function for soil moisture estimation for each point along the survey route.
000885999 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000885999 588__ $$aDataset connected to CrossRef
000885999 7001_ $$00000-0003-4020-0050$$aJensen, Karsten H.$$b1
000885999 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2
000885999 7001_ $$0P:(DE-HGF)0$$aDesilets, Darin$$b3
000885999 7001_ $$0P:(DE-HGF)0$$aZreda, Marek$$b4
000885999 7001_ $$00000-0002-3831-6305$$aLooms, Majken C.$$b5
000885999 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2019WR026588$$gVol. 56, no. 11$$n11$$p20$$tWater resources research$$v56$$x1944-7973$$y2020
000885999 8564_ $$uhttps://juser.fz-juelich.de/record/885999/files/2019WR026588.pdf
000885999 8564_ $$uhttps://juser.fz-juelich.de/record/885999/files/865777_1_merged_1584535077.pdf$$yOpenAccess
000885999 8564_ $$uhttps://juser.fz-juelich.de/record/885999/files/865777_1_merged_1584535077.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885999 8564_ $$uhttps://juser.fz-juelich.de/record/885999/files/2019WR026588.pdf?subformat=pdfa$$xpdfa
000885999 909CO $$ooai:juser.fz-juelich.de:885999$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000885999 9101_ $$0I:(DE-HGF)0$$60000-0002-5661-1359$$aExternal Institute$$b0$$kExtern
000885999 9101_ $$0I:(DE-HGF)0$$60000-0003-4020-0050$$aExternal Institute$$b1$$kExtern
000885999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b2$$kFZJ
000885999 9101_ $$0I:(DE-HGF)0$$60000-0002-3831-6305$$aExternal Institute$$b5$$kExtern
000885999 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000885999 9141_ $$y2020
000885999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000885999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2018$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000885999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000885999 920__ $$lyes
000885999 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000885999 980__ $$ajournal
000885999 980__ $$aVDB
000885999 980__ $$aUNRESTRICTED
000885999 980__ $$aI:(DE-Juel1)IBG-3-20101118
000885999 9801_ $$aFullTexts