001     885999
005     20210130010558.0
024 7 _ |a 10.1029/2019WR026588
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/26043
|2 Handle
024 7 _ |a WOS:000595832300021
|2 WOS
037 _ _ |a FZJ-2020-04221
082 _ _ |a 550
100 1 _ |a Andreasen, Mie
|0 0000-0002-5661-1359
|b 0
|e Corresponding author
245 _ _ |a Cosmic Ray Neutron Soil Moisture Estimation Using Physically Based Site‐Specific Conversion Functions
260 _ _ |a [New York]
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604500822_19235
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to advance the use of the cosmic ray neutrons (CRNs) to map soil moisture in heterogeneous landscapes, we need to develop a methodology that reliably estimates soil moisture without having to collect 100+ soil samples for each point along the survey route. In this study, such an approach is developed using physically based modeling with the numerical MCNP neutron transport code. The objective is to determine site‐specific conversion functions to estimate soil moisture from CRNs for the dominant land covers. Here, we assess this methodology at three field sites with similar mineral soil composition, but different land covers. First, we ensure that the developed models capture the most important differences in neutron transport behavior across sites. For this, we use measured time series and height profiles of thermal and epithermal neutrons. Then, we compare the estimates obtained from the site‐specific conversion functions with the standard N0‐calibration function. Finally, we compare the CRN soil moisture estimates with independent soil moisture estimates. Overall, the site‐specific models are in agreement with the observed trends in neutron intensities. The site‐specific soil moisture is similar to the N0‐estimated soil moisture, which results in comparable statistical measures. We show that various land covers have a significant impact on the amount and soil moisture sensitivity of epithermal neutrons, while the thermal neutrons are affected to a less degree. Thereby, thermal‐to‐epithermal neutron ratios can be used to identify the land cover type and thereby the appropriate conversion function for soil moisture estimation for each point along the survey route.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jensen, Karsten H.
|0 0000-0003-4020-0050
|b 1
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 2
700 1 _ |a Desilets, Darin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zreda, Marek
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Looms, Majken C.
|0 0000-0002-3831-6305
|b 5
773 _ _ |a 10.1029/2019WR026588
|g Vol. 56, no. 11
|0 PERI:(DE-600)2029553-4
|n 11
|p 20
|t Water resources research
|v 56
|y 2020
|x 1944-7973
856 4 _ |u https://juser.fz-juelich.de/record/885999/files/2019WR026588.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885999/files/865777_1_merged_1584535077.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885999/files/865777_1_merged_1584535077.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/885999/files/2019WR026588.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885999
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-5661-1359
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-4020-0050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129440
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-3831-6305
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2018
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21