001     886000
005     20230815122836.0
024 7 _ |a 10.5194/essd-12-2289-2020
|2 doi
024 7 _ |a 1866-3508
|2 ISSN
024 7 _ |a 1866-3516
|2 ISSN
024 7 _ |a 2128/26038
|2 Handle
024 7 _ |a altmetric:91054419
|2 altmetric
024 7 _ |a WOS:000575446500001
|2 WOS
037 _ _ |a FZJ-2020-04222
082 _ _ |a 550
100 1 _ |a Fersch, Benjamin
|0 0000-0002-4660-1165
|b 0
|e Corresponding author
245 _ _ |a A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
260 _ _ |a Katlenburg-Lindau
|c 2020
|b Copernics Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604472789_18853
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge.So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments.As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a DFG project 357874777 - FOR 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons
|0 G:(GEPRIS)357874777
|c 357874777
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Francke, Till
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heistermann, Maik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schrön, Martin
|0 0000-0002-0220-0677
|b 3
700 1 _ |a Döpper, Veronika
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jakobi, Jannis
|0 P:(DE-Juel1)169718
|b 5
700 1 _ |a Baroni, Gabriele
|0 0000-0003-2873-7162
|b 6
700 1 _ |a Blume, Theresa
|0 0000-0003-3754-7571
|b 7
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 8
700 1 _ |a Budach, Christian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gränzig, Tobias
|0 0000-0002-4725-1873
|b 10
700 1 _ |a Förster, Michael
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Güntner, Andreas
|0 0000-0001-6233-8478
|b 12
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kasner, Mandy
|0 0000-0002-6983-7453
|b 14
700 1 _ |a Köhli, Markus
|0 0000-0001-6098-3094
|b 15
700 1 _ |a Kleinschmit, Birgit
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Kunstmann, Harald
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Patil, Amol
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Rasche, Daniel
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Scheiffele, Lena
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Schmidt, Ulrich
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Szulc-Seyfried, Sandra
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Weimar, Jannis
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Zacharias, Steffen
|0 0000-0002-7825-0072
|b 24
700 1 _ |a Zreda, Marek
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Heber, Bernd
|0 0000-0003-0960-5658
|b 26
700 1 _ |a Kiese, Ralf
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Mares, Vladimir
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Mollenhauer, Hannes
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Völksch, Ingo
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Oswald, Sascha
|0 0000-0003-1667-0060
|b 31
773 _ _ |a 10.5194/essd-12-2289-2020
|g Vol. 12, no. 3, p. 2289 - 2309
|0 PERI:(DE-600)2475469-9
|n 3
|p 2289 - 2309
|t Earth system science data
|v 12
|y 2020
|x 1866-3516
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/886000/files/ESSD_Fersch%20et%20al._2020.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/886000/files/ESSD_Fersch%20et%20al._2020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:886000
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-4660-1165
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-0220-0677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)169718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129440
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 0000-0002-4725-1873
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 0000-0001-6233-8478
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 0000-0002-7825-0072
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 31
|6 0000-0003-1667-0060
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SYST SCI DATA : 2018
|d 2020-01-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EARTH SYST SCI DATA : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21