000886004 001__ 886004
000886004 005__ 20240711085639.0
000886004 0247_ $$2doi$$a10.1007/s11666-020-01101-x
000886004 0247_ $$2ISSN$$a1059-9630
000886004 0247_ $$2ISSN$$a1544-1016
000886004 0247_ $$2Handle$$a2128/30048
000886004 0247_ $$2WOS$$aWOS:000580513900001
000886004 037__ $$aFZJ-2020-04226
000886004 082__ $$a670
000886004 1001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b0$$eCorresponding author
000886004 245__ $$aInfluence of Process Parameters on the Aerosol Deposition (AD) of Yttria-Stabilized Zirconia Particles
000886004 260__ $$aBoston, Mass.$$bSpringer$$c2021
000886004 3367_ $$2DRIVER$$aarticle
000886004 3367_ $$2DataCite$$aOutput Types/Journal article
000886004 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648124657_1595
000886004 3367_ $$2BibTeX$$aARTICLE
000886004 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886004 3367_ $$00$$2EndNote$$aJournal Article
000886004 520__ $$aAerosol deposition (AD) is a novel deposition process for the fabrication of dense and rather thick oxide films at room temperature. The bonding of the deposited ceramic particles is based on a shock-loading consolidation, resulting from the impact of the ceramic particles on the substrate. However, the deposition mechanism is not fully understood. In addition, many technical challenges have been observed for achieving a successful deposition of the oxides with higher efficiency. In this work, the influence of different processing parameters on the properties of the deposited layer is studied. Proof of concept was done using 8 mol.% yttria-stabilized zirconia (8YSZ) powder as starting material. The window of deposition with respect to carrier gas flows for successful deposition was identified. The influence of this carrier gas flow, the substrate materials and the carrier gas species on the coating thickness, interface quality and coating microstructure was systematically investigated. The derived mechanical characteristics revealed an unexpected behavior related to a gradient microstructure. This study supports understanding of the mechanism of room-temperature impact consolidation and its effect on the mechanical properties of the deposited layer.
000886004 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000886004 588__ $$aDataset connected to CrossRef
000886004 7001_ $$0P:(DE-Juel1)164458$$aSingh, Reeti$$b1
000886004 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b2$$ufzj
000886004 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b3$$ufzj
000886004 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$ufzj
000886004 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000886004 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b6$$ufzj
000886004 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-020-01101-x$$p488-502$$tJournal of thermal spray technology$$v30$$x1544-1016$$y2021
000886004 8564_ $$uhttps://juser.fz-juelich.de/record/886004/files/Aerosol%20Deposition%20Method.pdf$$yPublished on 2020-10-19. Available in OpenAccess from 2021-10-19.
000886004 8564_ $$uhttps://juser.fz-juelich.de/record/886004/files/Mishra2021_Article_InfluenceOfProcessParametersOn.pdf$$yRestricted
000886004 909CO $$ooai:juser.fz-juelich.de:886004$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b0$$kFZJ
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b2$$kFZJ
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b3$$kFZJ
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000886004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b6$$kFZJ
000886004 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000886004 9141_ $$y2021
000886004 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000886004 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2018$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-06$$wger
000886004 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000886004 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-06$$wger
000886004 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000886004 920__ $$lyes
000886004 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000886004 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000886004 9801_ $$aFullTexts
000886004 980__ $$ajournal
000886004 980__ $$aVDB
000886004 980__ $$aI:(DE-Juel1)IEK-1-20101013
000886004 980__ $$aI:(DE-82)080011_20140620
000886004 980__ $$aUNRESTRICTED
000886004 981__ $$aI:(DE-Juel1)IMD-2-20101013