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Abstract

In this thesis, we study the operation of existing quantum annealers by simulating the real-
time dynamics of two coupled flux qubits based on SQUIDs (superconducting quantum
interference devices) during quantum annealing processes.

We investigate two aspects. First, we study the influence of the higher energy lev-
els which are neglected when deriving the qubit Hamiltonian from the superconducting
circuit model including the tunable coupler. Second, we investigate the influence of an
environment on the qubit system during quantum annealing. For the latter, we examine
two different models for the environment, a generic spin bath and non-interacting two-
level systems. For simulating the dynamics, we use the Suzuki-Trotter product-formula
algorithm to solve the time-dependent Schrödinger equation numerically.

We find that the higher energy levels as well as the presence of the tunable coupler
have little influence on the performance of the quantum annealing process for most of the
investigated problem instances, suggesting that the two-level approximation works very
well. However, we find that for a particular class of instances, the results of the SQUID
model and the qubit model show certain deviations.

Additionally, we perform experiments on the D-Wave 2000Q quantum annealer. Our
study of the two models for the environment suggests that the model of non-interacting
two-level systems is better suited to describe the data obtained from the real device than
the generic spin bath model.
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Zusammenfassung

In dieser Dissertation untersuchen wir die Funktionsweise existierender Quanten-Annealer,
indem wir Computersimulationen der Echtzeit-Dynamik zweier gekoppelter, auf SQUIDs
(supraleitenden Quanteninterferenzeinheiten, engl. superconducting quantum interference
devices) basierenden Fluss-Qubits während Quanten-Annealing-Prozessen durchführen.

Dabei gehen wir auf zwei Aspekte ein. Zuerst untersuchen wir den Einfluss der höheren
Energiezustände, welche bei der Herleitung des Qubit-Hamiltonoperators ausgehend vom
supraleitenden Schaltkreismodell einschließlich eines steuerbaren Kopplers, vernachlässigt
werden. Als Zweites untersuchen wir den Einfluss der Umgebung auf das Qubitsystem
während des Quanten-Annealing-Prozesses. Dazu studieren wir zwei verschiedene Modelle
für die Umgebung: ein generisches Spinreservoir und nicht miteinander wechselwirkende
Zwei-Zustands-Systeme. Zur Simulation der Dynamik verwenden wir den Suzuki-Trotter
Product-Formula-Algorithmus um die zeitabhängige Schrödingergleichung numerisch zu
lösen.

Wir finden, dass sowohl die höheren Energiezustände als auch die Präsenz des steu-
erbaren Kopplers für die meisten untersuchten Probleminstanzen wenig Einfluss auf die
Funktion des Quanten-Annealing-Prozesses haben, was nahe legt, dass die Zwei-Zustands-
Approximation sehr gut funktioniert. Wir finden jedoch auch, dass für eine spezielle Klasse
von Instanzen die Ergebnisse des SQUID-Modells und des Qubit-Modells gewisse Unter-
schiede aufweisen.

Zusätzlich führen wir Experimente auf dem D-Wave 2000Q Quanten-Annealer durch.
Unsere Untersuchung der beiden Modelle für die Umgebung suggeriert, dass das Modell
der nicht miteinander wechselwirkenden Zwei-Zustands-Systeme besser geeignet ist, die
auf dem echten Gerät gewonnenen Daten zu beschreiben, als das generische Spinreservoir.
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Chapter 1

Introduction

Simulating quantum systems on a conventional computer requires exponentially growing
memory and run time with increasing system size, and to date, it is believed that there is
in general no efficient (i.e. scaling only polynomially) algorithm when using conventional
computers. This renders simulations (excluding semi-classical approximations) of large
many-body quantum systems infeasible even for the largest supercomputers.

In 1982, Feynman proposed the idea to simulate quantum systems by means of another
generic quantum system which he called a quantum computer [Fey82]. The reason for
this quantum computer to be able to simulate quantum systems more efficiently than
a conventional computer is that it naturally follows the same quantum mechanical laws
as the quantum system to be simulated, thus circumventing the exponential growth of
resources.

Two different kinds of quantum computing have been proposed — the gate model of
quantum computing [Fey86; Bar+95; DiV00], and adiabatic quantum computation also
called quantum annealing [Fin+94; Bro+99; Far+00; CFP01].

The gate-model quantum computer operates in a way similar to a conventional com-
puter in terms of gates, a combination of which can be used to construct an algorithm.
One of the most commonly known algorithms for quantum computers is probably Shor’s
factoring algorithm [Sho94; Sho97], which can in principle determine the prime factors
of (large) numbers in polynomial time. It is not proven that there exists no efficient
factoring algorithm for conventional computers but so far, none is known and factoring
seems to be a hard problem for conventional computers. The same holds for the prob-
lem of finding the discrete logarithm [Sho94]. Currently used public-key cryptosystems,
such as RSA [RSA78], rely on the assumption that factoring large numbers into its two
(large) prime factors or finding the discrete logarithm are difficult tasks for a conventional
computer. However, with a large enough, fault-tolerant quantum computer, these prime
factors could in principle be computed efficiently and thus, the cryptosystem would break.
But we are still far away from building a large, fault-tolerant quantum computer. Current
quantum devices built in various laboratories around the world are at the stage of the
so-called noisy intermediate-scale quantum (NISQ) devices [Pre18], meaning that system
sizes are rather small and the imperfect gates are not yet error-corrected.

Other applications which may already work on these NISQ devices [Pre18], and have
a wider application area, are hybrid variational algorithms such as the quantum approx-
imate optimization algorithm (QAOA) [FGG14] or the variational quantum eigensolver
(VQE) [Per+14; McC+16]. Another goal, which does not necessarily have a practical ap-
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Chapter 1 Introduction

plication, is to show quantum supremacy [Boi+18; Nei+18], that is, to find a task which
can be efficiently performed on a (NISQ) device, but a conventional computer would need
an exponentially long run time or an exponential amount of memory to perform the same
task. Recently, quantum supremacy has been shown on a 53-qubit chip [Aru+19] (of the
gate-model type), by sampling from a probability distribution characterized by a random
circuit [Boi+18].

A quantum annealer functions in a way that is fundamentally different from the gate-
model quantum computer. The idea is to make use of the natural (adiabatic) evolution of
a quantum system prepared initially in its ground state. For a quantum annealer, no gates
are used. Instead, problems (usually optimization problems) are defined by specifying the
parameters of a problem Hamiltonian. The Hamiltonian of the quantum system changes
adiabatically in time from an initial Hamiltonian into this problem Hamiltonian.

Adiabatic quantum computation and the gate model of quantum computing have been
found to be computationally equivalent in the sense that one can simulate the other with
only polynomial overhead and vice versa [Aha+07]. Although a lot of theoretical work has
been done on adiabatic quantum computation [AL18], there are not many groups working
experimentally in this direction. However, D-Wave Systems Inc. manufactures and sells
quantum annealers, and their current device is much larger (about 2000 qubits [Kin+18])
than current gate-model quantum computers (53 qubits [Aru+19]). In this thesis, we
investigate, by numerical simulation on conventional computers, the qubits built and
used by D-Wave Systems Inc. for their quantum annealing processors [Har+10a].

In the following section, we summarize definitions, including the one of a qubit, and key
concepts of quantum computation as described in Refs. [NC10] and [Pre]. Subsequently,
we give a short summary on superconducting circuits as this is the technology used for
the quantum systems that we investigate in this thesis. Finally, we outline the content of
the main part of this thesis.

1.1 The qubit

The basic unit to represent and process information on a quantum computer is called
quantum bit or qubit. Like the “classical” bit, a qubit can represent a 0 or a 1. However,
in contrast to the “classical” bit which is a Boolean variable, a qubit can be described as
a unit vector in a two-dimensional complex vector space (Hilbert space) C. The vectors
representing 0 and 1 are usually denoted by

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
, (1.1)

where we introduced the braket notation |0〉 and |1〉 of the two vectors, and these two
vectors form a basis of C ≃ C

2. This basis is often called the computational basis. A
general qubit state |ψ〉 can be expressed as a linear combination of the basis vectors,
which is called superposition,

|ψ〉 = a|0〉+ b|1〉 =
(
a
b

)
, (1.2)
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Chapter 1 Introduction

probabilities are given by

p0 = |〈+|ψ〉|2 =
1 + sinϑ cosϕ

2
, p1 = |〈−|ψ〉|2 =

1− sinϑ cosϕ

2
. (1.6)

A more general way of writing down the qubit state is in terms of a density matrix,
usually denoted by ρ. If the qubit state is given by the vector |ψ〉, the corresponding
density matrix is

ρ = |ψ〉〈ψ|. (1.7)

A density matrix which can be expressed in this way describes a pure state. A density
matrix such as

ρ =
1

2
(|0〉〈0|+ |1〉〈1|), (1.8)

which cannot be written in the form of Eq. (1.7), describes a mixed state. As mentioned
previously, a pure state can be represented by a vector of unit length on the Bloch sphere.
A mixed state, however, is represented by a vector within the Bloch sphere, that is, the
norm of the vector is less than one. In fact, the state given in Eq. (1.8) corresponds
to a point at the origin. For this particular state, the probabilities for the two possible
measurement outcomes are p0 = p1 = 1/2, independent of the basis.

The time-evolution of a qubit is governed by the (time-dependent) Schrödinger equation
(TDSE)

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, (1.9)

where we used ~ = 1, as we do throughout this thesis, and the Hamiltonian H(t) is
a Hermitian 2 × 2-matrix. The formal solution of Eq. (1.9) is given by |ψ(t + τ)〉 =
U(t + τ, t)|ψ(t)〉 where the operator U(t + τ, t) is the unitary time-evolution operator
which evolves the state |ψ(t)〉 from time t to t+ τ .

The Pauli-matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.10)

and the 2×2-identity matrix I2 are unitary matrices which form a basis of the matrices in
C

2×2. Thus, for a single qubit, the Hamiltonian can be written as a linear combination of
the Pauli-matrices. Terms proportional to the identity matrix can be neglected as these
only add a global phase factor in the time evolution.

Systems consisting of N qubits are described by unit vectors in a 2N -dimensional
complex vector space. This vector space is a tensor-product space of the two-dimensional
complex vector spaces of the single qubits. This means that the states

{|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN〉 | i1, i2, . . . , iN ∈ {0, 1}}, (1.11)

where ⊗ denotes the tensor product, form a basis of the N -qubit vector space C
2N . A

state vector |Ψ〉 ∈ C
2N is called a product state if there exist |ψi〉 ∈ C

2, i = 1, 2, . . . , N
such that

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN〉. (1.12)
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1.1 The qubit

If |Ψ〉 ∈ C
2N cannot be expressed as a product state, |Ψ〉 is called an entangled state.

Omitting the ⊗ and writing all single-qubit states in a single ket, a general multi-qubit
state can be written as

|Ψ〉 = a0|0 . . . 000〉+ a1|0 . . . 001〉+ a2|0 . . . 010〉+ · · ·+ a2N−1|1 . . . 1〉, (1.13)

where the 2N amplitudes ai are complex numbers and satisfy
∑2N−1

i=0 |ai|2 = 1. Using
the tensor-product structure of the vector space, the previously discussed concepts such
as density matrices and the time evolution, can be straightforwardly extended to the
multi-qubit case.

For the gate-based quantum computer, quantum gates need to be defined. A universal
gate set is a set of gates which can be used to construct any other (multi-qubit) gate with
a finite sequence of gates from this set. A possibility to construct a universal gate set
would be to use two single-qubit gates, which perform rotations around independent axes
and at least one of them includes a free parameter, and an entangling two-qubit gate. An
example for such a set would be {RX(θ), RZ(φ),CNOT}, where RX(θ) rotates a single-
qubit state (see Fig. 1.1) around the x axis by an angle θ (changing the projection onto
the z axis) and RZ(φ) performs a rotation around the z axis by an angle φ (effectively
adding a phase factor to the state |1〉), and CNOT is the controlled-NOT gate, performing
a bit flip (application of σx) on the target qubit if the control qubit is in the state |1〉.
There are of course other possibilities for universal gate sets [Bar+95], which we will not
discuss here. The Hamiltonian determining the time evolution of the qubit system has to
be chosen in such a way that all gates of a given universal gate set can be performed by
changing external parameters only. For this, the qubit system may need to be coupled to
another auxiliary quantum system.

Like the composition of multi-qubit spaces, composite vector spaces of qubits and these
auxiliary quantum systems, which may be for instance modeled as harmonic oscillators,
are also described by tensor-product spaces. To state something about the qubit system
after the time evolution of the composite system, we have to perform the partial trace
over the auxiliary system (e.g. the harmonic oscillators) to obtain the reduced density
matrix describing the qubit system. If the composite system can be described by a pure
but entangled state, the reduced density matrix of the qubit system describes a mixed
state. This is not desirable, so entanglement with the auxiliary system at the time of the
measurement is to be avoided. While this can be in principle controlled for the auxiliary
system, unwanted but inevitable coupling of the qubit system to the environment leads to
decoherence. Not only can the qubit relax from the excited state to the ground state by
exchanging energy with the environment, but also the unitary time evolution of the entire
system can lead to entanglement of the qubit system and the environment, which yields
a non-unitary evolution of the reduced qubit density matrix. The interaction with the
environment yields then a mixed state for the qubit system, which loses phase coherence,
i.e., superpositions of the qubit states are destroyed.

Now that we have introduced the main concepts of qubit systems, in the next section,
we briefly outline experimental challenges and advances in building qubits from supercon-
ducting circuits.
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Chapter 1 Introduction

1.2 Brief overview of superconducting qubits

One of the currently popular devices used to build artificial two-level systems to be utilized
in a quantum computer are superconducting circuits. Although these systems are not
genuine two-level systems, i.e. qubits, they are commonly referred to as superconducting
qubits. Here, we briefly give an overview of some historically and currently important
designs and implementations, and mention some advantages and disadvantages of these
designs. A more detailed discussion including the circuit geometry of the system that we
study in this thesis is presented in Chapter 4 and Appendix A.

There are three basic types of superconducting qubits – the charge qubit [SSH97;
NPT99], the phase qubit [Mar+02; Ste+06] and the flux qubit [Chi00; MSS01].

The first realization of a charge qubit – the Cooper-pair box [SSH97; Bou+98] – suf-
fered from charge noise [Nak+02]. For the transmon [Koc+07], an extended version
of the Cooper-pair box, a reduced sensitivity to charge noise could be shown success-
fully [Sch+08]. However, like the phase qubit, the transmon qubit has a weak anharmonic-
ity leading to excitations to higher energy levels outside the computational subspace (leak-
age), which is a limiting factor for gate operations [Mot+09; Luc+10; Gam+11; WBE16;
Wil+17; WG18]. To overcome this issue, many pulse-shaping techniques have been
suggested [Mot+09; Gam+11; McK+17] and implemented [Cho+10; Luc+10; Kel+14;
Che+16; McK+17]. Variations of the transmon qubit have been proposed, and studies of
and with transmon qubits are currently performed by various groups in academia [Bar+13;
Lar+15; Bra+16; Bur+19; Gon+19; Rol+19] as well as in industry [Cal+18; Kli+18;
McK+19].

The simplest design of a flux qubit is a superconducting quantum interference device
(SQUID) [Chi00; MSS01]. However, this device was found to be sensitive to flux noise,
which limits the coherence time of this type of flux qubit [Ben+09; Wen17]. Long co-
herence times (a large multiple of the time needed to perform a single gate operation
so that error correction can be applied) are crucial for the gate-based model of quan-
tum computation to work [DiV00]. More sophisticated designs such as the three-junction
qubit [Moo+99; Orl+99; Wal+00; Gra+04], the fluxonium qubit [Man+09; Pop+14;
Ngu+19] or the capacitively shunted (C-shunt) flux qubit [You+07; Ste+10; Yan+16]
have been studied to be used for a gate-based quantum computer. For the three-junction
qubit, however, the coherence time did not improve significantly. The fluxonium qubit
and the C-shunt flux qubit seem to be more promising designs, attaining longer coherence
times [Wen17].

There are various coupling schemes for superconducting qubits. Couplings can be real-
ized by using inductances (inductive coupling) or by using capacitances (capacitive cou-
pling). The coupling may need to be controllable, either for application of two-qubit gates
or to control the annealing process. This can be achieved by tunable couplers [Plo+04;
BBY05; Har+07; Che+14] or by tuning frequency-tunable (transmon) qubits close to res-
onance [Maj+07; DiC+09]. Alternatively, two-qubit gates can be performed by driving
the qubits [Lee+09; Cho+11] or resonators which couple to the qubits [Pai+16].

The qubits used in the D-Wave quantum annealer are of the SQUID type [Har+09b;
Har+10a] and controllable inductive coupling is realized through tunable couplers [Har+09a].
This type of qubit turned out to be unsuited for the gate model of quantum computation
due to the short coherence time. The role of decoherence and temperature effects during
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1.3 Outline

quantum annealing is a controversial topic and has been discussed theoretically [CFP01;
SL05; AJN06; ATA09; Arc+17] and investigated experimentally [Boi+13; Dic+13]. Flux
qubits usually have a large anharmonicity, hence they are considered less prone to leak-
age [Yos+14; Kra+19]. In this thesis, we investigate to what extent this is true for the
flux qubits used for quantum annealing by D-Wave Systems Inc.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2, we recapitulate the concepts of
adiabatic quantum computation and quantum annealing. We also introduce the (time-
dependent) Hamiltonian which we use in subsequent chapters. We briefly comment on
complexity theory when we discuss the relation between the Ising spin Hamiltonian and
optimization problems in Section 2.2. In Section 2.3, we outline the Landau-Zener theory
and discuss its relation to adiabatic quantum computation and quantum annealing.

In Chapter 3, we present the Suzuki-Trotter product-formula algorithm which is the
method we use to solve the TDSE numerically. First, we discuss the working principle be-
fore we illustrate in more detail the implementation. We conclude Chapter 3 by discussing
the numerical errors of the method.

We begin in Chapter 4 by recapitulating the Josephson effect which arises in supercon-
ducting point contacts. Then we summarize the circuit quantization rules. Subsequently,
we discuss the Hamiltonian of the SQUIDs used by D-Wave Systems Inc. to model their
qubits as well as the Hamiltonian of two SQUIDs coupled via a third SQUID which me-
diates the coupling. We go through the steps needed to arrive at the qubit Hamiltonian.

In Chapter 5, we first discuss the discretization of the one-, two- and three-SQUID
Hamiltonians studied in Chapter 4. We consider some analytical calculations and methods
which we apply in the simulations. Then, we present and discuss our results.

Chapter 6 deals with the ideal qubit model in contact with an environment and we
study the effects on the quantum annealing process in comparison with the data obtained
from the D-Wave 2000Q quantum annealer. We consider two different models for the
environment based on two-level systems.

We conclude in Chapter 7 by summarizing and discussing our results.
Parts of Chapters 4, 5 and 6 have been published in Ref. [Wil+20] (publication [1]).
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Chapter 2

Adiabatic quantum computation and

quantum annealing

In this chapter, we first summarize the ideas of adiabatic quantum computation and quan-
tum annealing and present the mathematical framework in some detail. Subsequently, we
discuss the relation to optimization problems and to the Landau-Zener theory.

The idea of quantum annealing stems from a variation of the (classical) simulated-
annealing algorithm [KGV83] where thermal fluctuations of the state vector are replaced
by quantum fluctuations [ACF89; Fin+94; KN98]. The motivation was that a quantum
system can tunnel through high but narrow energy barriers, while a classical system only
performing thermal jumps would be trapped in local minima separated by narrow but
high barriers [ACF89; DS15]. Although intended as an optimization algorithm for con-
ventional computers, quantum annealing was soon investigated experimentally [Bro+99].
In this experiment, annealing of a disordered magnet from the paramagnetic phase to the
glassy phase was performed in two different ways: first cooling, then turning on an exter-
nal transverse magnetic field, or first turning on a large transverse magnetic field, then
cooling and finally turning down the magnetic field, representing the classical and quan-
tum annealing protocols, respectively. The results indicated that the quantum annealing
protocol might have an advantage over thermal annealing in finding low energy states,
and the idea of quantum computers using thermal cooling and a transverse magnetic field
to solve spin problems was proposed [Bro+99].

Shortly afterwards, adiabatic quantum computation [Far+00; Far+01] has been pro-
posed, the idea being that a quantum system evolves adiabatically (according to the
adiabatic theorem [BF28]) with a time-dependent Hamiltonian whose ground state at the
end of the evolution encodes the solution to an optimization problem. Although initially
formulated as an algorithm for a gate-model quantum computer [Far+00], an adiabatic
quantum computer has been proposed as a physical device performing the quantum com-
putation by its natural adiabatic evolution [CFP01].

Despite the different motivations of quantum annealing and adiabatic quantum compu-
tation, the operating principles of these types of quantum computation are basically the
same [MN08] and the names are often used interchangeably [ST06]. However, sometimes
people distinguish between the two. Adiabatic quantum computation may denote the
closed-system, adiabatic version while quantum annealing may denote the case when the
evolution is not necessarily adiabatic, i.e., non-adiabatic transitions or thermal excitations
(i.e., considering an open system) may occur [Dic+13; Boi+14; KM14; CT15]. Sometimes,

9



Chapter 2 Adiabatic quantum computation and quantum annealing

one wants to distinguish between the more general adiabatic quantum computation proven
to be polynomially equivalent to the gate model of quantum computation [Aha+07] and
thus universal, and the more restricted version closer to the initial proposal which is then
referred to as quantum annealing [VAL16; Pre18]. We will mainly use the former distinc-
tion. However, when referring to differences in the initial proposals of quantum annealing
and adiabatic quantum computation, we will also distinguish between those two names.
We may also refer explicitly to universal, open-system or closed-system adiabatic quantum
computation.

Now, we give the formal description of quantum annealing and adiabatic quantum
computation including the definitions which we need in the following chapters. Here,
we give a brief overview and go into detail only where necessary. A detailed review on
(closed-system) adiabatic quantum computation is given in Ref. [AL18].

A (closed) quantum system is prepared in the ground state of a time-dependent Hamil-
tonian H(t) at time t = 0 which we call the initial Hamiltonian Hinit. The time evolution
of the quantum system is governed by the time-dependent Hamiltonian through the TDSE

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, (2.1)

where |ψ(t)〉 denotes the wave function of the quantum system. If the time-dependent
Hamiltonian changes sufficiently slowly, according to the adiabatic theorem [BF28; Kat50],
the quantum system stays in the instantaneous ground state such that at the end of the
process at t = ta, the system is in the ground state of the final Hamiltonian H(ta) = HP .
More generally, the adiabatic theorem of quantum mechanics states that if the time-
dependent Hamiltonian H(t) describing the quantum system under consideration changes
sufficiently slowly, the quantum system stays in the i-th eigenstate of the instantaneous
Hamiltonian during the evolution if it was initially in the i-th eigenstate of H(0) [BF28;
Kat50].

There are various proofs quantifying under which conditions the change of the Hamilto-
nian is “slow enough”, see for instance the review in [AL18]. We give the (non-degenerate)
version presented in Ref. [Ami09], which relates the time ta to the inverse energy gap
squared

max
s∈[0,1]

|〈ψm(s)|H ′(s)|ψn(s)〉|
(Em(s)− En(s))2

≪ ta, ∀m 6= n, (2.2)

where s = t/ta ∈ [0, 1] is the rescaled, dimensionless time, |ψn(s)〉 denotes the n-th
eigenstate of H(s) with eigenenergy En(s) and H ′(s) is the derivative of H(s) with respect
to s. When the system starts in the ground state, it is usually sufficient to consider the
condition for the ground state and the first excited state:

max
s∈[0,1]

|〈ψ1(s)|H ′(s)|ψ0(s)〉|
(E1(s)− E0(s))2

≪ ta. (2.3)

For practical applications, the time needed to perform an adiabatic evolution may be
prohibitive or not a priori determinable such that for a chosen time ta the Hamiltonian
may not change slowly enough and non-adiabatic transitions occur. Then, the system does
not necessarily end in the ground state of H(s = 1) but may end up with considerable
probability in an excited state. We will refer to the probability to find the system at s = 1
in the ground state of HP as success probability.

10



2.1 The time-dependent Hamiltonian

2.1 The time-dependent Hamiltonian

In this section, we discuss commonly used models of the time-dependent Hamiltonian
used for quantum annealing and adiabatic quantum computation. Usually, the time
dependence of the Hamiltonian

H(s) = A(s)Hinit +B(s)HP , (2.4)

is denoted by the dimensionless anneal fraction s = t/ta ∈ [0, 1] and the functions A(s)
and B(s) define the annealing schedule. The symbol Hinit denotes the initial Hamiltonian
and HP denotes the final or problem Hamiltonian. Initially, the functions A(s) and B(s)
were often chosen to be linear functions A(s) = (1−s), B(s) = s [Far+00; Far+01; CFP01;
Chi+02] in the context of adiabatic quantum computation, and A(s) changing from very
large (compared to the energy scale of HP ) at s = 0 to A(1) = 0, and B(s) = 1 in the
context of quantum annealing [KN98; San+02]. However, different annealing functions
satisfying A(0)≫ B(0) and B(1)≫ A(1) have been studied theoretically [RC02; MN08]
and implemented experimentally [Har+10b; Joh+11; Lan+14].

Other possibilities of annealing paths including an intermediate catalyst or driver
Hamiltonian HC to improve the success probability have been investigated [FGG02; HS14;
Cro+14; ZZS16; Hor+17]. The time-dependent Hamiltonian is then, for instance, given
by [AL18]

H̃(s) = (1− s)Hinit + s(1− s)HC + sHP , (2.5)

such that HC does not contribute for s = 0 and for s = 1.
Methods to improve the success probability such as non-adiabatic evolution due to fast

annealing [Cro+14], special annealing schedules [Can+11; SNK12] or thermal excitation
and relaxation [ALT08; Dic+13; Arc+17; Mar+19] are also studied. If the system has a
considerable probability to be in a (low-energy) excited state before an avoided crossing
of the energy levels, the probability might be transferred back to the ground state at the
avoided crossing [Cro+14; SNK12] or the system can relax to the ground state [Dic+13;
Mar+19] due to energy exchange with the environment.

2.1.1 The qubit Hamiltonian

One of the simplest Hamiltonians for an N -qubit system with known ground state, which
is a product state and easy to prepare, is given by

Hinit = −Γ
N∑

i=1

σxi , (2.6)

where Γ defines the energy scale, and the ground state is the uniform superposition of all
computational basis states. The choice of the initial Hamiltonian for adiabatic quantum
computation is not completely arbitrary. For instance, taking the one-dimensional projec-
tor onto the uniform superposition state as Hinit, the ground state would be the same but
the required time to reach a constant success probability for an adiabatic evolution would
scale exponentially in the number of qubits, even for easy problem instances [Far+08].
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Equation (2.8) describes a stoquastic Hamiltonian, that is, the off-diagonal elements
of the Hamiltonian matrix (in a given basis, e.g. the computational basis) are all real
and non-positive [Bra+08]. It is not clear whether adiabatic quantum computation with
a stoquastic Hamiltonian can show quantum speedup [PT13; Røn+14]. However, there
is evidence that adiabatic quantum computation with stoquastic Hamiltonians is not
universal if the system has to stay in its instantaneous ground state, but it becomes
universal if a non-adiabatic evolution is allowed [AL18].

Stoquastic and non-stoquastic catalyst Hamiltonians have been studied in [Cro+14]
and [Hor+17], showing that stoquastic catalyst Hamiltonians lead to small improvement
of the performance for many of the investigated instances while non-stoquastic catalyst
Hamiltonians improve the performance only for a few instances but if they do, this im-
provement is then typically larger. The improvement of the performance when including
the stoquastic catalyst Hamiltonian is due to an enlarged minimal energy gap and/or a
reduced number of avoided crossings. On the other hand, improvement due to a non-
stoquastic catalyst Hamiltonian is often caused by an increased number of avoided cross-
ings. Thus, for the hard instances it seems to be sometimes more beneficial to introduce
more avoided crossings than to enlarge the (very small) minimal energy gap [Hor+17]
indicating that non-adiabatic evolutions can improve the success probability for hard in-
stances. Unfortunately, in [Hor+17], data is not shown for all instances with all catalyst
Hamiltonians but only for the catalyst Hamiltonian with the largest improvement.

D-Wave Systems Inc. have started experiments including non-stoquastic qubit Hamil-
tonians [Ozf+20].

2.2 Relation to optimization problems

Optimization problems which can be directly mapped onto the Ising spin Hamiltonian
Eq. (2.7) are quadratic unconstrained binary optimization (QUBO) problems. These
problems can be formulated as [PJ92]

min
z∈{0,1}N

zTMz = min
z∈{0,1}N

(
N∑

i=1

Miizi + 2
∑

i<j

Mijzizj

)
, (2.9)

where M is a symmetric N×N -matrix, z = (z1, z2, . . . , zN)
T , zi ∈ {0, 1} and z2i = zi. The

string (or strings) of binary variables z which minimize(s) Eq. (2.9), is the solution of the
QUBO. The binary variables zi can be replaced by the σzi matrices with eigenvalues ±1 by
mapping zi 7→ (1− σzi )/2. The additional constant term can be neglected as it is neither
relevant for the minimization nor for the Hamiltonian. Thus, QUBOs are problems which
map naturally to quantum annealing with the Hamiltonian given in Eq. (2.8). Solving a
general QUBO is an NP-hard problem [PJ92; Koc+14]. We summarize informally and
very briefly some concepts and definitions of complexity theory from the book [AB09]:

The class P contains decision problems (“yes”/“no” answer) which can be solved in
polynomial time by a deterministic Turing machine. A (deterministic) Turing machine
is a device which performs computations by reading a character from an infinite tape,
writing a new character and moving left or right depending on the input at the current
position and the current internal state according to a transition rule. The transition rule
may also change the internal state. It is a simplification of a computing device which can,
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quadratic binary optimization problems can be transformed to QUBOs if the constraints
satisfy certain conditions [Koc+14]. For the D-Wave quantum annealer, some of the Jji in
Eq. (2.8) are fixed to zero due to the structure of the connectivity graph. Consequently,
not all QUBO instances can be directly mapped onto the D-Wave quantum annealer, but
embedding methods [Bun+14] need to be applied which may lead to additional constraints
on the problem to be embedded [Luc14].

The possibility to map NP(-hard) problems onto the Hamiltonian for quantum an-
nealing or adiabatic quantum computation and the hope of using quantum effects to
solve NP-hard problems has pushed research in this field and many NP(-hard) problems
have been studied in the context of quantum annealing and adiabatic quantum compu-
tation. Studies include theoretical and numerical work, for instance, examinations of the
scaling properties by solving the time-dependent Schrödinger equation numerically for
small instances of the exact cover problem [Far+01], the set partition problem [STT01],
the problem of finding cliques of size k in random graphs [Chi+02], by using quantum
Monte Carlo for satisfiability problems [HY11], random spin glass instances [Kar+10],
3-regular 3-XORSAT and 3-regular maximum cut problems including a semi-analytical
approach [Far+12], by using discretized and heuristic methods for satisfiability prob-
lems [Hog03] or numerical [Cho10] and perturbative [DA11] investigations of the change
of the minimum energy gap when modifying the problem or driving Hamiltonian for max-
imum independent set problems. Later, when the D-Wave quantum annealer became
available, also comparisons to experiments performed on D-Wave’s quantum annealing
processors have been made [Boi+14; Røn+14; Hen+15]. Earlier studies reported polyno-
mial scaling of the complexity with problem size (the dependence of the minimal energy
gap on the problem size), although only for small problem sizes [Far+01; Chi+02; Hog03].
Later work, however, indicated that the scaling with the problem size may rather be expo-
nential [HY11; Far+12]. Nevertheless, these studies still consider small system sizes only
and conclusions on the asymptotic scaling behavior cannot be drawn. Additionally, only
adiabatic evolutions are taken into account. Non-adiabatic evolutions, among other mod-
ifications also mentioned previously, may show different scaling behavior [SNK12; AL18].
Up to date, there is no analytical proof stating whether scaling improvement is possible or
not for the model given by the Hamiltonian in Eq. (2.8). Due to the (polynomial) equiv-
alence to the gate model of quantum computation, universal adiabatic quantum compu-
tation should show the same speedup as gate-model quantum computation. A quadratic
speedup was shown theoretically [RC02] for searching in an unordered database (similar
to Grover’s algorithm in the case of the gate-model quantum computer). There are still
many open questions regarding the complexity and potential quantum speedup through
adiabatic quantum computation [AL18] which we will not discuss any further here.

Of course, not only search and optimization problems can be studied on a quantum
annealing device, but also for instance quantum simulations. This is another promis-
ing field for applications of quantum annealing. Experimental quantum simulations of
condensed-matter physics on the D-Wave 2000Q quantum annealer (using modified an-
nealing schemes) have been reported [Kin+18; Har+18].
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2.3 Relation to the Landau-Zener theory

In this section, we discuss the relation between adiabatic quantum computation and the
Landau-Zener theory [Lan32; Zen32]. First, we summarize the basic concepts of the
Landau-Zener theory. Subsequently, we discuss in more detail under which circumstances
adiabatic quantum computation with a single spin-1/2 particle can be mapped onto the
Landau-Zener Hamiltonian.

The Landau-Zener theory describes a spin-1/2 particle in a linearly increasing magnetic
field vt, where t denotes the time which goes from −∞ to ∞ and v can be regarded as
the “sweep velocity” of the magnetic field. In addition, a constant transverse field h′x is
applied. Thus, the Landau-Zener Hamiltonian can be written as

HLZ(t) = −h′xσx − vtσz. (2.10)

Without the transverse field h′x, the eigenenergies become degenerate at t = 0 and the
energy levels cross at this point. For non-zero transverse field, however, the eigenenergies
do not become degenerate and at t = 0, there is an avoided crossing of the energy levels
(see Fig. 2.3(a)). The Landau-Zener theory provides a formula for the probability that
the particle changes its spin direction while evolving through the avoided crossing. This
means if the particle starts in its ground state (|↓〉 for v > 0 and t→ −∞), the probability
to find the particle in the excited state |↓〉 at t → ∞, i.e., that the particle undergoes a
non-adiabatic transition, is given by [Zen32]

P1 = e−πh
′2
x /v. (2.11)

For large sweep velocities v (a fast change of the magnetic field) and small transverse
fields h′2x /v → 0, P1 → 1. Accordingly, the probability to find the particle in the ground
state |↑〉 at t→∞ is given by

P0 = 1− P1 = 1− e−πh′2x /v, (2.12)

and plotted for an example in Fig. 2.3(b).
For a single spin-1/2 particle, the Landau-Zener theory provides a formula for the

probabilities P0 and P1 in the case of a non-adiabatic evolution, and an estimate for
which parameters the evolution stays (very close to) adiabatic. The exact mapping to the
Hamiltonian for adiabatic quantum computation, however, is only possible under certain
conditions which we study in the following.

In the simple case of only a single spin-1/2 particle which undergoes linear adiabatic
quantum computation, the time-dependent Hamiltonian is given by

Hlin(s) = −(1− s)hxσx − shzσz, (2.13)

where s ∈ [0, 1]. It is straightforward to compute the energy gap ∆E(s) and the minimal
energy gap ∆Emin = mins∈[0,1]∆E(s) of this Hamiltonian:

∆E(s) = 2
√

(1− s)2h2x + s2h2z, (2.14a)

∆Emin = ∆E(s∗) =
2|hxhz|√
h2x + h2z

, s∗ =
h2x

h2x + h2z
. (2.14b)
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we obtain

U † (hxσ
x − hzσz)U =

√
h2x + h2zσ̃

z, (2.20a)

U †σxU =
hx√
h2x + h2z

σ̃z − sign(hx)
hz√
h2x + h2z

σ̃x, (2.20b)

and thus

U †Hlin(s)U = − h2x√
h2x + h2z

σ̃z +
|hx|hz√
h2x + h2z

σ̃x + s
√
h2x + h2zσ̃

z. (2.21)

In order to write this Hamiltonian in the form of Eq. (2.18), the following conditions must
be satisfied:

h′z = −
h2x√
h2x + h2z

|hz| = |hx| (2.22a)

−2h′z =
√
h2x + h2z ⇔ h′z = −

|hz|√
2

(2.22b)

−h′x =
|hx|hz√
h2x + h2z

h′x = −
hz√
2
. (2.22c)

The second unitary transformation is given by

U ′ =




hz+
√
h2x+h

2
z√

2hx

√
h2x

h2x+h
2
z+hz
√
h2x+h

2
z

hz−
√
h2x+h

2
z√

2hx

√
h2x

h2x+h
2
z−hz
√
h2x+h

2
z

−
√

h2x

2
(
h2x+h

2
z+hz
√
h2x+h

2
z

) −
√

h2x

2
(
h2x+h

2
z−hz
√
h2x+h

2
z

)


 , (2.23)

and yields for the transformed Hamiltonian for adiabatic quantum computation

U ′†Hlin(s)U
′ =

h2x√
h2x + h2z

σ̃z +
|hx|hz√
h2x + h2z

σ̃x − s
√
h2x + h2zσ̃

z, (2.24)

and for the conditions

h′z =
h2x√
h2x + h2z

|hz| = |hx| (2.25a)

2h′z =
√
h2x + h2z ⇔ h′z =

|hz|√
2

(2.25b)

−h′x =
|hx|hz√
h2x + h2z

h′x = −
hz√
2
. (2.25c)

Thus, we could show that a transformation which maps the Hamiltonian Hlin(s) onto the
Landau-Zener Hamiltonian exists if and only if |hz| = |hx|.

Although the direct mapping can only be performed in special cases and the Landau-
Zener theory has other additional prerequisites (such as ts → ∞ and ∆E ′(s = 1) ≫
∆E ′(s∗)), the Landau-Zener theory provides a qualitative description whether or not the
evolution of adiabatic quantum computation and quantum annealing of a single particle is
adiabatic. Nevertheless, a quantum system composed of more than a single spin-1/2 parti-
cle may show similar behavior when evolving through an avoided level crossing [DeR+97;
AAN09; Hob15].
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The Suzuki-Trotter product-formula

algorithm

A major issue when numerically solving the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
|ψ〉 = H(t)|ψ〉, (3.1)

where the Hamiltonian H(t) explicitly depends on time, is that for numerical diagonal-
ization, the Hamiltonian would need to be diagonalized at each time step, which has
to be small compared to the time scale on which the Hamiltonian changes. Since di-
agonalization of a D × D−matrix scales with O(D3), this becomes infeasible for large
matrices or a large amount of necessary time steps. Additionally, if the size of the matrix
representing the Hamiltonian (i.e. the dimension D of the Hilbert space of the system)
becomes very large, the problem of storing the complete matrix arises. For large but time-
independent Hamiltonians there are different algorithms which can cope with this issue
as for instance the Chebyshev algorithm [TK84]. To compute only a few eigenvalues and
eigenstates, for example only the ground state energy, for instance the Lanczos algorithm
can be used [Pai72]. However, to solve the Schrödinger equation in high-dimensional
Hilbert spaces and for a time-dependent Hamiltonian, the state-of-the-art algorithm is
the Suzuki-Trotter product-formula algorithm [DeR87]. We discuss this algorithm in the
following sections.

3.1 Principle

For a time-independent Hamiltonian H(t) = H, the formal solution of the Schrödinger
equation is given by

|ψ(t)〉 = e−i(t−t0)H |ψ(t0)〉 = U(t− t0)|ψ(t0)〉, (3.2)

where the time-evolution operator U(t − t0) evolves the state |ψ(t0)〉 from time t0 to
time t. Usually, the Hamiltonian is not given in diagonal form and a diagonalization is
not possible due to the dimension of the Hilbert space, i.e., the size of the matrix H.
Thus, an (unconditionally) stable algorithm which approximates exp(−iτH) so that the
multiplication by |ψ(t0)〉 becomes feasible, is needed. For instance, the Cranck-Nicholson
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method approximating exp(−iτH) by

e−iτH ≈ UCN(τ) =

(
I− iτH

2

)(
I+

iτH

2

)−1

(3.3)

is unconditionally stable, but due to the matrix inversion, it is an implicit method which
is costly and becomes useless for large systems [DeR87].

However, in most cases the Hamiltonian is not a dense matrix but a sparse matrix such
that there exists a decomposition into K matrices

H =
K∑

k=1

Ak, (3.4)

where the Ak are diagonal or block-diagonal. A more detailed discussion on how to
choose the Ak is given in Section 3.2. Here, we consider for clarity the case where H =
A1 + A2. The generalization to a sum of more operators as in Eq. (3.4) is discussed in
Refs. [Suz76], [Suz85] and [DeR87] and works analogously. The basic idea of the Suzuki-
Trotter product-formula algorithm is to use this decomposition and the Trotter formula
for bounded operators A and B [Tro59]

lim
n→∞

(
eA/neB/n

)n
= eA+B, (3.5)

to obtain an approximation of the time-evolution operator which is easy to handle. In
order to do so, we have to set n in Eq. (3.5) to a constant, large but finite integer. The
error made by fixing n is given by [Suz85]

∣∣∣
∣∣∣eA+B −

(
eA/neB/n

)n∣∣∣
∣∣∣ ≤ ||[A,B]||

2n
e||A||+||B||, (3.6)

and vanishes with 1/n. Thus, we can approximate the time-evolution operator by

U(t− t0) = e−i(t−t0)(A1+A2) ≈
(
e−i(t−t0)A1/ne−i(t−t0)A2/n

)n
=
(
e−iτA1e−iτA2

)n
= Un

1 (τ),
(3.7)

where we introduced τ = (t−t0)/n and U1(τ) = exp(−iτA1) exp(−iτA2), the (first-order)
approximation of the time-evolution operator for the small time step τ .

In Ref. [Suz76], Suzuki derives higher-order approximations of exp(A+B) which con-
verge faster than (exp(A/n) exp(B/n))n. For example, Suzuki’s second-order approxima-
tion is given by

eA+B ≈
(
eA/neB/ne−[A,B]/(2n2)

)n
. (3.8)

Applying this approximation to the time-evolution operator for a small time-step τ , we
get

e−iτ(A1+A2) ≈ e−iτA1e−iτA2e[A1,A2]τ2/2. (3.9)

However, symmetrized versions of these approximants turned out to be simpler and at
least as accurate. For Monte Carlo simulations, they are even necessary to avoid a non-
Hermitian approximation of the Hermitian operator exp(−βH) [DD83]. The symmetrized
second-order and fourth-order approximations are [DD83; DeR87]

e−iτ(A1+A2) ≈ e−iτA1/2e−iτA2e−iτA1/2 = U2(τ), (3.10a)
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e−iτ(A1+A2) ≈ e−iτA1/2e−iτA2/2eiτ
3C3/4e−iτA2/2e−iτA1/2 = U4(τ), (3.10b)

respectively, with C3 = [A1 + 2A2, [A1, A2]]/6. Moreover, independent of K, higher-order
approximations can be computed from the lower-order approximations [Suz91; DM06]:

U2(τ) = U †
1(−τ/2)U1(τ/2), (3.11a)

U4(τ) = U2(cτ)U2(cτ)U2((1− 4c)τ)U2(cτ)U2(cτ), (3.11b)

where c = 1/(4− 41/3).
For the right choice of the Ak, we can update the state vector |ψ〉 by applying ℓ-

component updates only, for a small integer ℓ (usually ℓ = 2). Since U1, U2 and U4 are
unitary approximations if the Ak are Hermitian, an algorithm based on these approxima-
tions preserves the norm of the state vector and is unconditionally stable [DM06].

In the case of a time-dependent Hamiltonian H(t), the time-evolution operator U(t, t0)
which evolves the state |ψ(t0)〉 from time t0 to time t is given by

U(t, t0) = T exp


−i

t∫

t0

H(t′)dt′


 , (3.12)

where the symbol T denotes the time-ordering operator which has to be applied if H(t)
does not commute with H(t′) for any t′ 6= t. In order to compute |ψ(t)〉 = U(t, t0)|ψ(t0)〉,
we can use

U(t, t0) = U(t = t0 + nτ, t0 + (n− 1)τ) · · ·U(t0 + 2τ, t0 + τ)U(t0 + τ, t0). (3.13)

There are special cases where H(t) commutes with H(t′) for all t′ 6= t and U(t0 + (m +
1)τ, t0 +mτ) can be calculated analytically. In general, however, we have to use that if
the time step τ = (t − t0)/n is small enough, we can discretize the Hamiltonian in time
and the Hamiltonian is approximately constant during the time step τ . Then, we can
write

U(t0 + (m+ 1)τ, t0 +mτ) ≈ exp


−i

t0+(m+1)τ∫

t0+mτ

H(t0 + (m+ 1/2)τ)dt′




≈ exp(−iτH(t0 + (m+ 1/2)τ))

=: Ũ(t0 + (m+ 1)τ, t0 +mτ), (3.14)

where 0 ≤ m ≤ n − 1 and H(t0 + (m + 1/2)τ) denotes the Hamiltonian at time t0 +
(m + 1/2)τ which we use instead of the time-dependent Hamiltonian during the short

time from t0+mτ to t0+(m+1)τ . For the approximated time-evolution operator Ũ(t0+
(m+ 1)τ, t0 +mτ), we can apply the same first-, second- or fourth-order approximations
as for the time-independent Hamiltonian discussed previously.

3.2 Implementation

After the discussion of the main idea, in this section, we elaborate on the details of the
implementation of the algorithm presented in Ref. [DeR87]. As mentioned in Section 3.1,
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the aim is to partition the Hamiltonian into a sum of K diagonal and block-diagonal
matrices Ak so that exp(−iτAk)|ψ〉 can be computed without constructing the full matrix
and using ℓ-component updates only, for a small integer ℓ.

When decomposing the Hamiltonian H into a sum of non-commuting operators Ak and
approximating the time evolution operator by

U1(t+ τ, t) = e−iτA1e−iτA2 · · · e−iτAK , (3.15)

in the implementation, we have to take care of the order of the product in U †
1(t+ τ, t) so

that

U †
1(t+ τ, t) = eiτAKeiτAK−1 · · · eiτA1 , (3.16)

and U1(t+τ, t)U
†
1(t+τ, t) = U †

1(t+τ, t)U1(t+τ, t) = I to keep the algorithm unconditionally
stable.

For a diagonal matrix Ak with eigenvalues a
(j)
k , j = 0, 1, . . . , D − 1, it is clear that we

have

e−iτAk = exp


−iτ



a
(0)
k

. . .

a
(D−1)
k





 =



e−iτa

(0)
k

. . .

e−iτa
(D−1)
k


 , (3.17)

which means for the product exp(−iτAk)|ψ〉 that each element ψj of the state vector |ψ〉
is multiplied by a factor exp(−iτa(j)k ). This takes O(D) operations.

For a block-diagonal matrix Ak′ with L blocks A
(l)
k′ ,

e−iτAk′ = exp


−iτ



A

(0)
k′

. . .

A
(L−1)
k′





 =




e−iτA
(0)

k′

. . .

e−iτA
(L−1)

k′


 (3.18)

is again a block-diagonal matrix with blocks exp(−iτA(l)
k′ ). We will use this relation

extensively in this chapter.

3.2.1 Pauli updates

The decomposition of the Hamiltonian is usually chosen in such a way that the blocks
A

(l)
k′ of the block-diagonal matrix Ak′ are 2 × 2-matrices and can be written as a sum of

Pauli-matrices

A
(l)
k′ = αxσ

x + αyσ
y + αzσ

z = α · σ, α =



αx
αy
αz


 ∈ R

3, σ =



σx

σy

σz


 . (3.19)

Then, the analogue of Euler’s formula for Pauli matrices can be applied to compute the
exponential analytically

e−iτA
(l)

k′ = e−iτα·σ = cos(τ ||α||)I− i sin(τ ||α||)α · σ||α|| , (3.20)
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3.2 Implementation

where ||α|| denotes the norm of α. The update rule for the coefficients ψj and ψj+1 of the

state vector, which are affected by the block exp(−iτA(l)
k′ ), is given by

ψj ←
(
cos(τ ||α||)− i sin(τ ||α||) αz||α||

)
ψj − i sin(τ ||α||)

αx − iαy
||α|| ψj+1

ψj+1 ← −i sin(τ ||α||)
αx + iαy
||α|| ψj +

(
cos(τ ||α||) + i sin(τ ||α||) αz||α||

)
ψj+1. (3.21)

If the contribution of the σz matrix is included in the diagonal matrix Ak, i.e., αz = 0,
the update rule simplifies to

ψj ← cos(τ ||α||)ψj − sin(τ ||α||) iαx + αy
||α|| ψj+1

ψj+1 ← − sin(τ ||α||) iαx − αy||α|| ψj + cos(τ ||α||)ψj+1. (3.22)

Updating the full state vector |ψ〉 by exp(−iτAk′) takes O(D) operations.

3.2.2 Decomposition of a tridiagonal matrix

We consider a D ×D tridiagonal matrix A of the form

A =




a0 x− iy
x+ iy a1 x− iy

x+ iy a2
. . .

. . . . . . x− iy
x+ iy aD−1



. (3.23)

For simplicity, we have chosen the entries x ± iy on the subdiagonal to be all equal.
However, the following decomposition can be straightforwardly extended to the general
case. To decompose A, we can choose a diagonal matrix A0

A0 =




a0
a1

. . .

aD−1


 , (3.24)

and 2 block-diagonal matrices A1 and A2 with blocks of size 2× 2 where

A1 =




0 x− iy
x+ iy 0

0 x− iy
x+ iy 0

. . .

0 x− iy
x+ iy 0




, (3.25a)
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and

A2 =




0
0 x− iy

x+ iy 0
0 x− iy

x+ iy 0
. . .

0 x− iy
x+ iy 0

0




, (3.25b)

if D is even, or

A1 =




0 x− iy
x+ iy 0

0 x− iy
x+ iy 0

. . .

0 x− iy
x+ iy 0

0




, (3.26a)

and

A2 =




0
0 x− iy

x+ iy 0
0 x− iy

x+ iy 0
. . .

0 x− iy
x+ iy 0




, (3.26b)

if D is odd. In this way, we obtain block-diagonal matrices with blocks of Pauli-matrices
whose exponentiation we just discussed, leading to the update rule Eq. (3.22), where
even j (with odd j + 1) and odd j (with even j + 1) are processed separately. The
additional zeros yield a factor of one when exponentiated. Thus, a tridiagonal matrix can
be decomposed into three matrices: a diagonal matrix and two block-diagonal matrices.

3.2.3 Decomposition of a matrix with elements on the m-th
diagonals

Another type of matrix which occurs often is given by (Hermitian) matrices with elements
only on the m-th diagonals. For m ≥ 1, the elements of such a matrix A are given by

alj =





x+ iy if l = j +m

x− iy if l = j −m
0 else.

(3.27)
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The j-th submatrix containing only the elements ajj, aj,m+j, am+j,j and am+j,m+j




0 . . . 0
. . .

ajj aj,m+j
...

. . .
...

am+j,j am+j,m+j

. . .

0 . . . 0




=




0 . . . 0
. . .

0 x− iy
...

. . .
...

x+ iy 0
. . .

0 . . . 0




,

(3.28)

has the same properties as σx and σy when being exponentiated and thus, we can apply
Euler’s formula to obtain the exponential of this submatrix:

exp




−i




0 . . . 0
. . .

ajj aj,m+j
...

. . .
...

am+j,j am+j,m+j

. . .

0 . . . 0







=




0 . . . 0
. . .

cos(
√
x2 + y2) − sin(

√
x2 + y2) ix+y√

x2+y2

...
. . .

...

− sin(
√
x2 + y2) ix−y√

x2+y2
cos(

√
x2 + y2)

. . .

0 . . . 0




. (3.29)

Since the j-th and the (j+i)-th (for i = 1, . . . ,m−1) submatrices commute, we decompose
the matrix A with non-zero elements only on the m-th diagonals into the two block-
diagonal matrices A1 and A2 with maximal block size 2m× 2m. The matrices A1 and A2

are chosen to be

A1 =




B0

B2m

. . .

B̃2lm




(3.30a)
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and

A2 =




0
. . .

0

Bm

. . .

B(2l−1)m

0
. . .

0




,



 k + 1

(3.30b)

if ⌈D/m⌉ is even and l ∈ N0 and k ∈ {0, 1, . . .m− 1} such that D = 2lm+m+ k+1, or,
if ⌈D/m⌉ is odd and l ∈ N0 and k ∈ {0, 1, . . .m− 1} such that D = 2lm+ k + 1,

A1 =




B0

B2m

. . .

B2(l−1)m

0
. . .

0




,



 k + 1

(3.31a)

and

A2 =




0
. . .

0

Bm

. . .

B̃(2l−1)m




, (3.31b)
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with blocks Bj of size 2m× 2m

Bj =




ajj aj,m+j

aj+1,j+1 aj+1,m+j+1

. . . . . .

am+j−1,m+j−1 am+j−1,2m+j−1

am+j,j am+j,m+j

am+j+1,j+1 am+j+1,m+j+1

. . . . . .

a2m+j−1,m+j−1 a2m+j−1,2m+j−1




,

(3.32)

and blocks B̃j of size (m + k + 1) × (m + k + 1), with 0 ≤ k = D −m − j − 1 < m as
above,

B̃j =




aD−m−k−1,D−m−k−1 aD−m−k−1,D−k−1

. . . . . .

aD−m−1,D−m−1 aD−m−1,D−1

. . .
. . .

aD−k−1,D−m−k−1 aD−k−1,D−k−1

. . . . . .

aD−1,D−m−1 aD−1,D−1




.

(3.33)

Exponentiating the matrices−iA1 and−iA2 then basically means we have to exponentiate
the matrices −iBj and −iB̃j and we use Eq. (3.29) with c = cos(

√
x2 + y2) and s =

− sin(
√
x2 + y2)(ix+ y)/

√
x2 + y2:

e−iBj =




c s
c s

. . . . . .

c s
−s∗ c

−s∗ c
. . . . . .

−s∗ c




, (3.34a)
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e−iB̃j =




c s
. . . . . .

c s
1

. . .

1
−s∗ c

. . . . . .

−s∗ c




. (3.34b)

Updating the state vector is then done by applying the modified update rule

ψj ← cos(
√
x2 + y2)ψj − sin(

√
x2 + y2)

ix+ y√
x2 + y2

ψj+m

ψj+m ← − sin(
√
x2 + y2)

ix− y√
x2 + y2

ψj + cos(
√
x2 + y2)ψj+m, (3.35)

for the blocks of A1 and A2 separately since they do not commute.

3.2.4 Decompositions in tensor-product spaces

In the case of tensor-product spaces, the relations

eA⊗I = eA ⊗ I (3.36)

and

eA⊗I+I⊗B =
(
eA ⊗ I

) (
I⊗ eB

)
(3.37)

may be useful to find a suitable decomposition into block matrices. Moreover, if A has
the property A2n = I and A2n+1 = A, as for instance block matrices of Pauli matrices do,
then

e−iA⊗B =
∞∑

n=0

(−i)nA
n ⊗ Bn

n!
= I⊗

∞∑

n=0

(−1)n B
2n

(2n)!
− iA⊗

∞∑

n=0

(−1)n B2n+1

(2n+ 1)!

= I⊗ cos(B)− iA⊗ sin(B). (3.38)

If B is diagonal, cos(B) and sin(B) can be easily evaluated by replacing the eigenvalues
bi of B by cos(bi) and sin(bi) respectively. Choosing for example A = σx, the update rule
for the state vector ψ (stored in a two-dimensional array) is

ψ0,j ← cos(bj)ψ0,j − i sin(bj)ψ1,j

ψ1,j ← cos(bj)ψ1,j − i sin(bj)ψ0,j. (3.39)

In the case that ψ is stored as a one-dimensional array and the dimension of B is M ×M ,
the update rule can be written as

ψj ← cos(bj)ψj − i sin(bj)ψM+j
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ψM+j ← cos(bj)ψM+j − i sin(bj)ψj, (3.40)

which is very similar to Eq. (3.35) for y = 0 and m =M . For a block-diagonal matrix of
σx matrices

A =



σx

. . .

σx


 , (3.41)

the update rule is extended accordingly (for even i):

ψiM+j ← cos(bj)ψiM+j − i sin(bj)ψ(i+1)M+j

ψ(i+1)M+j ← cos(bj)ψ(i+1)M+j − i sin(bj)ψiM+j. (3.42)

In this way, we can find decompositions of Hamiltonians in tensor-product spaces by
identifying terms like A⊗ I or A⊗ B as used in Eqs. (3.37) and (3.38).

3.2.5 Efficiency and non-Pauli updates

Using any of the update rules discussed here, the update exp(−iAk)|ψ〉 of a state vector
|ψ〉 of dimension D can be performed in O(D) operations. For a Hamiltonian of dimension
D ×D decomposed into K matrices, the update

K∏

k=1

e−iτAk |ψ〉 (3.43)

can be performed in O(KD) operations. Thus, the algorithm is more efficient if the
number K of matrices, into which the Hamiltonian is decomposed, is small.

The update of two coefficients ψj and ψl of the state vector requires read access only
to these two coefficients when applying any of the rules discussed in the previous sections.
Thus, pairs of coefficients can be updated in parallel and the implementation using OpenMP

is straightforward. Therefore, we use OpenMP for the parallelization of the algorithm.
If a partition into 2 × 2-matrices such that Pauli-updates can be performed is not

efficiently possible, it may be useful to consider block-diagonal matrices with (time-

independent) blocks A
(l)
k′ of dimension ℓ × ℓ, ℓ > 2. These blocks are then diagonalized

(either analytically or numerically) such that

A
(l)
k′ = V (l)D(l)V (l)† (3.44)

with D(l) diagonal. The update of the state vector is then computed by



ψj
ψj+1

...
ψj+ℓ−1


← V (l)e−iτD

(l)

V (l)†




ψj
ψj+1

...
ψj+ℓ−1


 . (3.45)

This means (assuming all blocks A
(l)
k′ of Ak′ have the same dimension ℓ × ℓ and D/ℓ =

L) that the update exp(−iτAk′)|ψ〉 takes O(Lℓ2 = Dℓ) operations. Thus, to keep the
algorithm efficient, ℓ should not be too big.
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3.3 Error analysis

In this section, we discuss how the error due to the approximation made in the product-
formula algorithm behaves. Error bounds for the local error, that is the error introduced
in a single step of time τ , can be derived for the k-th order approach [DeR87]:

|||ψexact(τ)〉 − |ψk(τ)〉|| = ||(U(τ)− Uk(τ)) |ψ(0)〉|| ≤ ||U(τ)− Uk(τ)|| ≤ ckτ
k+1, (3.46)

where |ψexact(τ)〉 is obtained by exact diagonalization, |ψk(τ)〉 is obtained by the k-th order
product-formula algorithm, and ck is a constant depending on the order of the approach
and the specific decomposition of the Hamiltonian as well as the (time-independent)
Hamiltonian itself. The operator norm is the norm induced by the vector norm ||A|| =
sup|||ψ〉||=1(||A|ψ〉||) for some operator A, and since we use the L2-norm (Euclidean norm)
for vectors, the induced norm equals the spectral norm (largest singular value). For
this metric, the global error, that is the accumulated error at time t = nτ , is bounded
by [DeR87]

|||ψexact(t)〉 − |ψk(t)〉|| ≤ nckτ
k+1. (3.47)

Similar error bounds can be derived for the time-dependent Hamiltonian, in particular,
the local error vanishes as τ k+1 for the k-th order method [HD90].

We can use Eq. (3.46) to test the implementation of the product-formula algorithm.
Reducing the size of the system so that exact diagonalization becomes feasible, we can
compute the left-hand side of Eq. (3.46) for different values of τ and look at the scaling with
increasing τ . If we do not observe the scaling with τ k+1 for the k-th order method, there
is an error in the implementation. If we observe the expected behavior, we cannot rule
out for sure that there is still a mistake in the implementation, but it is very unlikely that
a mistake does not affect the scaling behavior, and thus an error in the implementation
becomes unlikely.

However, the metric |||ψexact(τ)〉 − |ψk(τ)〉|| is rather pessimistic because an error in
the global phase increases this bound, although due to the free choice of the global phase,
we would not consider a difference in the global phase as an error. Consider the following
case. The state vectors |ψ〉 and |φ〉 differ only by a global phase 0 < ϑ < 2π, that is
|ψ〉 = eiϑ|φ〉, in which case we would still consider these state vectors to describe the
same physical state and evaluating any observable would yield the same result. However,
we find

|||ψ〉 − |φ〉|| =
∣∣∣∣(eiϑ − 1

)
|φ〉
∣∣∣∣ =

√
2 (1− cos(ϑ)) 6= 0. (3.48)

Other metrics which yield zero if the states |ψ〉 and |φ〉 only differ by a global phase
are 1 − |〈ψ|φ〉| and 1 − |〈ψ|φ〉|2, and we can show for 1 − |〈ψexact(τ)|ψk(τ)〉| and 1 −
|〈ψexact(τ)|ψk(τ)〉|2:

|||ψexact(τ)〉 − |ψk(τ)〉||2 = 〈ψexact(τ)|ψexact(τ)〉+ 〈ψk(τ)|ψk(τ)〉
− 〈ψexact(τ)|ψk(τ)〉 − 〈ψk(τ)|ψexact(τ)〉
= 2(1−ℜ(〈ψexact(τ)|ψk(τ)〉)) ≤ c2kτ

2k+2 (3.49)

1− |〈ψexact(τ)|ψk(τ)〉| = 1−
√
ℜ(〈ψexact(τ)|ψk(τ)〉)2 + ℑ(〈ψexact(τ)|ψk(τ)〉)2︸ ︷︷ ︸

≥0
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≤ 1− |ℜ(〈ψexact(τ)|ψk(τ)〉)| ≤ 1−ℜ(〈ψexact(τ)|ψk(τ)〉)

=
1

2
|||ψexact(τ)〉 − |ψk(τ)〉||2 , (3.50)

1− |〈ψexact(τ)|ψk(τ)〉|2 = 1−ℜ(〈ψexact(τ)|ψk(τ)〉)2 −ℑ(〈ψexact(τ)|ψk(τ)〉)2
≤ 1−ℜ(〈ψexact(τ)|ψk(τ)〉)2
= (1−ℜ(〈ψexact(τ)|ψk(τ)〉)) (1 + ℜ(〈ψexact(τ)|ψk(τ)〉)︸ ︷︷ ︸

≤1

)

≤ 2 (1−ℜ(〈ψexact(τ)|ψk(τ)〉)) = |||ψexact(τ)〉 − |ψk(τ)〉||2 .
(3.51)

However, we are often interested in expectation values of Hermitian operators A instead
of the state vector itself. Thus, the quantity to look at is the difference between the
expectation values in the exact state |ψexact〉 and in the state |ψk〉 obtained from the k-th
order product-formula algorithm. We can derive the following bound:

|〈ψexact|A|ψexact〉 − 〈ψk|A|ψk〉|
≤ 2
√

Var|ψk〉(A)|〈ψk|ψexact〉|
√

1− |〈ψk|ψexact〉|2 + 2||A||
(
1− |〈ψk|ψexact〉|2

)
(3.52)

≤ 2
√
Var|ψk〉(A)ckτ

k+1 + 2||A||c2kτ 2k+2 = 2ckτ
k+1
(√

Var|ψk〉(A) + ||A||ckτ k+1
)
, (3.53)

where ||A|| denotes (in the case of an Hermitian operator A) the absolute value of the
eigenvalue with the largest magnitude, and we could in principle also compute the variance
Var|ψk〉(A) = 〈ψk|A2|ψk〉 − 〈ψk|A|ψk〉2 with respect to the state |ψexact〉 instead of |ψk〉.
However, except for a few cases where we can obtain the state |ψexact〉 analytically or by
exact diagonalization, we do not know the exact state and thus, computing the variance
with respect to |ψk〉 is more practical.

Proof of Eq. (3.52): First note that we can write

|ψexact〉 = α|ψk〉+ β|χ〉 (3.54)

with |α|2+|β|2 = 1, 〈ψk|ψexact〉 = α, 〈ψk|χ〉 = 0 and 〈ψk|ψk〉 = 〈ψexact|ψexact〉 = 〈χ|χ〉 = 1.
For states |x1〉 and |x2〉 with 〈x1|x2〉 = 0 and 〈x1|x1〉 = 〈x2|x2〉 = 1, we can use the

Gram-Schmidt process to complete |x1〉 and |x2〉 to an orthonormal basis. We denote this
basis by {|xj〉}j. Since 〈x1|A|xj〉〈xj|A|x1〉 = |〈x1|A|xj〉|2 ≥ 0 for an Hermitian operator
A, we obtain

|〈x2|A|x1〉|2 = 〈x1|A|x2〉〈x2|A|x1〉+ 〈x1|A|x1〉〈x1|A|x1〉 − 〈x1|A|x1〉〈x1|A|x1〉
≤ 〈x1|A

∑

j

|xj〉〈xj|A|x1〉 − 〈x1|A|x1〉〈x1|A|x1〉

= 〈x1|A2|x1〉 − 〈x1|A|x1〉2 = Var|x1〉(A). (3.55)

For two normalized states |x1〉 and |x2〉, the bound given by

|〈x1|A|x1〉 − 〈x2|A|x2〉| ≤ 2||A|| (3.56)

31



Chapter 3 The Suzuki-Trotter product-formula algorithm

is tight. First, we show that 2||A|| is indeed an upper bound:

|〈x1|A|x1〉 − 〈x2|A|x2〉| ≤ |〈x1|A|x1〉|+ |〈x2|A|x2〉| ≤ ||A|x1〉||+ ||A|x2〉|| ≤ 2||A||.
(3.57)

Now we show that the bound is tight by showing that the bound is attained for a special
choice of A, |x1〉 and |x2〉. Let A be a bounded Hermitian operator with largest positive
eigenvalue λ > 0 and largest negative eigenvalue −λ < 0, i.e., ||A|| = λ. Let |x1〉 be an
eigenstate with eigenvalue λ and |x2〉 an eigenstate with eigenvalue −λ. In this case, the
states |x1〉 and |x2〉 are orthonormal. Then

|〈x1|A|x1〉 − 〈x2|A|x2〉| = |〈x1|λ|x1〉+ 〈x2|λ|x2〉| = |2λ| = 2||A||. (3.58)

Thus, the bound Eq. (3.56) is tight and we cannot find a better one if |x1〉 and |x2〉 are
orthogonal. Note that inserting 〈ψk|ψexact〉 = 0 in Eq. (3.52) gives again 2||A|| as an upper
bound. However, for the states |ψexact〉 and |ψk〉, we expect that they are not orthogonal,
but almost equal with |〈ψk|ψexact〉| ≈ 1.

For the difference between the expectation values with respect to the states |ψk〉 and
|ψexact〉, we then have

|〈ψexact|A|ψexact〉 − 〈ψk|A|ψk〉|
(3.54)
= ||α|2〈ψk|A|ψk〉+ αβ∗〈χ|A|ψk〉+ α∗β〈ψk|A|χ〉+ |β|2〈χ|A|χ〉 − 〈ψk|A|ψk〉|
= |(1− |α|2) (〈χ|A|χ〉 − 〈ψk|A|ψk〉) + 2ℜ (αβ∗〈χ|A|ψk〉) |
≤ (1− |α|2) |〈χ|A|χ〉 − 〈ψk|A|ψk〉|+ 2|ℜ (αβ∗〈χ|A|ψk〉) |

(3.56)

≤ 2(1− |α|2)||A||+ 2|αβ∗〈χ|A|ψk〉|
≤ 2(1− |α|2)||A||+ 2|α||β|

√
〈ψk|A|χ〉〈χ|A|ψk〉

(3.55)

≤ 2(1− |α|2)||A||+ 2|α|
√
1− |α|2

√
Var|ψk〉(A)

= 2
√

Var|ψk〉(A)|〈ψk|ψexact〉|
√

1− |〈ψk|ψexact〉|2 + 2||A||
(
1− |〈ψk|ψexact〉|2

)
.

When decomposing |ψk〉 instead of |ψexact〉 (see Eq. (3.54)), we obtain the same bound
except that the variance is then computed with respect to the state |ψexact〉, but as men-
tioned previously, in most cases it is more useful to compute the variance with respect to
|ψk〉.

Example: The harmonic oscillator We investigate the error bounds by the simple
example of the harmonic oscillator. That is, the Hamiltonian is given by

Hosc = −EC
∂2

∂ϕ2
+ EL

ϕ2

2
, (3.59)

where ϕ is the coordinate variable and EC and EL are energies. The expectation value
of the operator ϕ is to be computed and the bound Eq. (3.52) is to be investigated.
We may expect some difficulties because the operator ϕ is unbounded. However, on the
computer, we have to discretize the operator ϕ and represent it by an N × N -matrix
covering a finite range [ϕmin, ϕmax] which is bounded. We use N = 47, EC = 4.68GHz,
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Chapter 4

Superconducting flux qubits

As discussed in the introduction, a qubit is a quantum system with two energy eigen-
states only, i.e., a two-level system. Such a system could be, for instance, the spin of an
electron. But already in this case, we have to neglect all the other energy eigenstates of
the particle such as energy eigenstates induced by an external potential in position space.
All two-level systems we can think of are actually simplifications of systems with more
energy levels for which a two-dimensional subspace is well separated from the rest of the
space [WL02]. Superconducting qubits which are multi-level systems based on supercon-
ducting circuits are thus also not genuine qubits in the sense that they are not perfect
two-level systems. Rather, a well-separated subspace of the larger system is used to model
the qubit. Nevertheless, these multi-level systems are commonly called superconducting
qubits.

In this chapter, we will use the terms SQUID (superconducting quantum interference
device) model or flux model when referring to the multi-level system and use qubit only
when we refer to the model comprising (the approximate) two-level systems. Before we
discuss the SQUID Hamiltonian and the mapping of the flux model to the qubit model,
we give a brief introduction to superconducting circuits.

4.1 Superconducting circuits

Superconducting circuits are built from circuit elements known from classical electrody-
namics such as capacitances and inductances. In principle, dissipative elements can also be
considered [Dev97; BKD04]. However, in this thesis we do not study circuits comprising
dissipative elements. An element which does not occur in classical circuits but is impor-
tant in superconducting circuits used to build qubits, is the Josephson junction [Jos62;
Jos64]. A Josephson junction is basically a nonlinear inductance which introduces an-
harmonicities in the Hamiltonian, separating the two qubit energy levels from the other
energy levels. Before we summarize the circuit quantization technique in general and in
particular for two example circuits, we briefly describe the Josephson effect. As before,
we use units with ~ = 1 throughout this chapter.

4.1.1 The Josephson effect

In the BCS theory of superconductors [BCS57], below the critical temperature, the charge
carriers are described as Cooper pairs. These Cooper pairs are bound pairs of electrons

37



Chapter 4 Superconducting flux qubits

near the Fermi surface which experience an effectively attractive potential induced by the
electron-phonon coupling. In their ground state, the two electrons in a Cooper pair have
momenta ~k and −~k and opposite spins, effectively forming boson-like particles which can
condense to a macroscopic, coherent ground state, similar to Bose-Einstein condensation.
A Josephson (tunnel) junction consists of two superconductors separated by an insulating
barrier. Cooper pairs can tunnel through this barrier coherently, leading to a nonzero
supercurrent at zero voltage and an oscillating supercurrent at constant voltage [Jos62;
Jos64].

A Josephson junction can be regarded as a capacitance CJ in parallel with a nonlinear
inductance characterized by the current-flux relation

I(t) = Ic sin(2eφ(t)), (4.1)

where Ic denotes the junction-specific critical current and e denotes the electron charge.
The dimensionless flux 2eφ = ϕ equals the gauge invariant phase difference of two coupled
superconductors [Dev97].

The term for the potential energy of the Josephson junction is given by

W = −EJ cos(2eφ), (4.2)

where EJ = Ic/(2e). This can be verified by deriving the Euler-Lagrange equation from
the Lagrangian

L = T −W =
CJ
2
φ̇2 + EJ cos(2eφ). (4.3)

Under consideration that the conjugate variable of the flux is given by the charge Q = ∂L
∂φ̇

,

we obtain

∂L
∂φ

= −∂W
∂φ

= −Ic sin(2eφ) =
d

dt

∂L
∂φ̇

=
d

dt
Q = −I. (4.4)

which yields the characteristic relation Eq. (4.1).

4.1.2 Circuit quantization

An important step for the description, and thus for the simulation, of a superconducting
circuit is to go from the circuit diagram to the quantum-mechanical Hamiltonian. This
step is usually called circuit quantization and is discussed in detail in Ref. [Dev97]. A
concise summary is given in Ref. [Bis10], providing a recipe to construct the Hamiltonian
from a circuit diagram which we outline briefly:

• Simplify the circuit using the rules for series and parallel connections (optional).

• Choose a node which serves as ground. This freedom of choice is analogous to the
gauge freedom in classical electrodynamics [Dev97].

• Choose a spanning tree S connecting all nodes to ground without closing any loops.
The branches of the spanning tree are called tree branches b. The other branches
closing the loops are called closure branches b′.
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4.1 Superconducting circuits

• Define node fluxes as Φn(t) =
∑

b∈S Snb
∫ t
−∞ vb(t

′)dt′, where the node flux of the
ground node is Φground = 0, vb(t) is the voltage across the circuit element of branch
b, and Snb = ±1 if b is on the path from ground to the node n (with the sign
depending on the orientation) and Snb = 0 otherwise.

• A branch flux of a tree branch b is defined as the difference φb = Φn2 −Φn1 between
the node fluxes Φn1 and Φn2 of the two nodes n1 and n2 that are connected by
the branch b. The branch flux of a closure branch b′ is defined as the difference
between the node fluxes of the two nodes n′

1 and n′
2 minus the external flux φx

piercing the loop: φb′ = Φn′
2
− Φn′

1
− φx. Alternatively, the flux of a closure branch

b′ can be written as the sum (taking into account the orientation) of the fluxes φbi
of the tree branches bi of the loop ℓ minus the external flux φxℓ threading the loop:
φb′ =

∑
bi∈ℓ φbi − φxℓ .

• Formulate the kinetic and potential energy terms as functions of the branch fluxes
and their time derivatives (the branch voltages vb = φ̇b). Either express all branch
fluxes in terms of node fluxes or express the branch fluxes of closure branches in
terms of the branch fluxes of tree branches. If time-dependent external fluxes are
present, terms proportional to the time derivative of such an external flux may arise
which cannot be neglected in general [YSK19].

• Form the Lagrangian L. If possible, eliminate superfluous variables by using, e.g.,
the method described in [Ric18]. In the case of time-dependent external fluxes
(especially if one is interested in multi-time observables), one may want to perform
a variable transformation to the irrotational degrees of freedom as discussed in
Ref. [YSK19].

• Perform the Legendre transformation H =
∑N

b=1 φ̇bQb − L with Qb =
∂L
∂φ̇b

(or H =
∑N

n=1 Φ̇nQ̃n−L with Q̃n = ∂L
∂Φ̇n

), assuming that the system of equations for Qb (Q̃n)
is invertible, to arrive at the Hamiltonian.

• Finally, replace the variables by their corresponding operators satisfying the com-
mutation relations [φb, Qb] = i (or [Φn, Q̃n] = i).

As an example, we apply the circuit quantization rules to derive the Hamiltonian of
the circuits shown in Fig. 4.1 and Fig. 4.2. The first circuit is a simple LC-circuit with
capacitance C and inductance L. We apply the circuit quantization rules:

• We choose the lower of the two nodes to be ground with node flux Φground = 0 and
label the upper node flux by Φ.

• We choose the branch over the capacitance to be the tree branch and the branch
over the inductance to be the closure branch.

• The branch flux of the tree branch with label φ1 is expressed in node fluxes by φ1 =
Φ−Φground = Φ and the branch flux of the closure branch is φ2 = Φ−Φground = Φ.

• The capacitance contributes to the kinetic energy with T = Cφ̇2
1/2 = CΦ̇2/2 and

the inductance contributes to the potential energy with W = φ2
2/(2L) = Φ2/(2L),

where we expressed all branch fluxes in terms of the node fluxes.
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4.2 Superconducting quantum interference device

+ EJ0

((
ϕCJJ,0 − ϕxCJJ,0

)2

8
cos

(
ϕxCJJ,0

2

)
+

(
ϕCJJ,0 − ϕxCJJ,0

)

2
sin

(
ϕxCJJ,0

2

))

=− ECCJJ,0
∂2ϕCJJ,0

+
E ′
LCJJ,0

2

(
ϕCJJ,0 − ϕxCJJ,0 +

EJ0 sin(ϕ
x
CJJ,0/2)

2E ′
LCJJ,0

)2

, (4.12)

where E ′
LCJJ,0

= ELCJJ,0
+EJ0 cos

(
ϕxCJJ,0/2

)
/4. Since the resulting Hamiltonian describes

a shifted harmonic oscillator, we can immediately recognize the expectation value of ϕCJJ,0

in its ground state

〈ϕCJJ,0〉 = ϕxCJJ,0 −
EJ0 sin(ϕ

x
CJJ,0/2)

2ELCJJ,0
+ EJ0 cos

(
ϕxCJJ,0/2

)
/2
. (4.13)

We can use the result of this Born-Oppenheimer analysis to replace ϕCJJ,0 by 〈ϕCJJ,0〉
in Htotal (Eq. (4.10)). We now want to effectively decouple the degree of freedom ϕ0 of
the coupler from the other two SQUIDs by means of a basis transformation similar to a
Schrieffer-Wolff transformation [SW66]. To this end, we perform the basis transformation

eiT (t)H
〈ϕCJJ,0〉
total e−iT (t) − ieiT (t)

(
∂

∂t
e−iT (t)

)

= H
〈ϕCJJ,0〉
total + [iT (t), H

〈ϕCJJ,0〉
total ] +

1

2!
[iT (t), [iT (t), H

〈ϕCJJ,0〉
total ]]

+
1

3!
[iT (t), [iT (t), [iT (t), H

〈ϕCJJ,0〉
total ]]] + · · · − ieiT (t)

(
∂

∂t
e−iT (t)

)
= Heff , (4.14)

with

T = T (t) = iα(ϕ1 − ϕx1 + ϕ2 − ϕx2)∂ϕ0 , (4.15)

where α is a parameter to be determined accordingly. Note that we have to take into
account the explicit time dependence of the basis transformation. Thus, for the time evolu-
tion of the state vector exp(iT (t))|ψ〉 to satisfy the Schrödinger equation, the Hamiltonian
has to be transformed according to (see also [Mes61]):

i
∂

∂t
|ψ〉 = H|ψ〉 (4.16a)

⇔ i
∂

∂t
e−iT (t)eiT (t)|ψ〉 = He−iT (t)eiT (t)|ψ〉 (4.16b)

⇔ i
∂

∂t
eiT (t)|ψ〉 =

(
eiT (t)He−iT (t) − ieiT (t)

(
∂

∂t
e−iT (t)

))
eiT (t)|ψ〉, (4.16c)

resulting in the additional term −i exp(iT (t)) (∂t exp(−iT (t))). The calculation of the ba-
sis transformation Eq. (4.14) is given in Appendix B.1, yielding the effective Hamiltonian
in the new basis

Heff =
2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos(ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)
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+EL

(
1 +

M2

(L+ LCJJ/4)Leff

+ α2L+ LCJJ/4

Leff

− 2
αM

Leff

)(
(ϕ1 − ϕx1)2

2
+

(ϕ2 − ϕx2)2
2

)

+ELeff

ϕ2
0

2
−
(
EC0 + 2ECα

2
)
∂2ϕ0

+

(
MEL
Leff

− αELeff

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0

+

(
M2EL

(L+ LCJJ/4)Leff

+ α2ELeff
− 2

αMEL
Leff

)
(ϕ1 − ϕx1) (ϕ2 − ϕx2)

+

(
iα
∂

∂t
(ϕx1 + ϕx2)− 2ECα (∂ϕ1 + ∂ϕ2)

)
∂ϕ0

−EJ0 cos
(〈ϕCJJ,0〉

2

)
cos(ϕ0 − α(ϕ1 − ϕx1 + ϕ2 − ϕx2)). (4.17)

Defining

βeff =
EJ0
ELeff

cos

(〈ϕCJJ,0〉
2

)
, (4.18)

and approximating cos(ϕ0 − α(ϕ1 − ϕx1 + ϕ2 − ϕx2)) to second order in (the products of)
ϕ0, ϕ1 − ϕx1 and ϕ2 − ϕx2 yields

Heff ≈
2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos(ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)

+EL

(
1 +

M2

(L+ LCJJ/4)Leff

− 2αM

Leff

+
α2(L+ LCJJ/4) (1 + βeff)

Leff

)(
(ϕ1 − ϕx1)2

2
+

(ϕ2 − ϕx2)2
2

)

+ELeff
(1 + βeff)

ϕ2
0

2
−
(
EC0 + 2ECα

2
)
∂2ϕ0

+

(
iα
∂

∂t
(ϕx1 + ϕx2)− 2ECα(∂ϕ1 + ∂ϕ2)

)
∂ϕ0

+
EL
Leff

(M − α(L+ LCJJ/4) (1 + βeff)) (ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0

+
EL
Leff

(
M2

(L+ LCJJ/4)
− 2αM + α2(L+ LCJJ/4) (1 + βeff)

)
(ϕ1 − ϕx1) (ϕ2 − ϕx2) . (4.19)

Choosing α =M/((L+LCJJ/4)(1+βeff)), the term proportional to (ϕ1−ϕx1 +ϕ2−ϕx2)ϕ0

vanishes and we obtain

Heff ≈
2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos(ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)

+EL

(
1 +

M2

(L+ LCJJ/4)Leff

βeff
(1 + βeff)

)((ϕ1 − ϕx1)2
2

+
(ϕ2 − ϕx2)2

2

)

+ELeff
(1 + βeff)

ϕ2
0

2
−
(
EC0 +

2ECM
2

(L+ LCJJ/4)2(1 + βeff)2

)
∂2ϕ0

+
M

(L+ LCJJ/4)(1 + βeff)

(
i
∂

∂t
(ϕx1 + ϕx2)− 2EC (∂ϕ1 + ∂ϕ2)

)
∂ϕ0

+
ELM

2

(L+ LCJJ/4)Leff

βeff
(1 + βeff)

(ϕ1 − ϕx1) (ϕ2 − ϕx2) . (4.20)
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The effective Hamiltonian Eq. (4.20) exhibits a coupling term between ϕ1 and ϕ2 which
is tunable by changing βeff which is a function of ϕxCJJ,0 (cf. Eqs. (4.18) and (4.13)).

This transformation to obtain the effective Hamiltonian is also outlined in [Wil+20].

4.2.3 Mapping SQUIDs to two-level systems for quantum
annealing

Since EC ≪ EL and the prefactor ELM/Leff is roughly 300 times larger than 2ECM/(L+
LCJJ/4), we can neglect the term proportional to (∂ϕ1 +∂ϕ2)∂ϕ0 in Eq. (4.20), and we find
that the Hamiltonian part of the coupler is decoupled from the rest of the Hamiltonian.
The Hamiltonian for ϕ0 is the harmonic oscillator with displacement in momentum. In
this section, we write explicitly the dependence of the external fluxes on the dimensionless
time s. We obtain for the effective Hamiltonian of the two SQUIDs 1 and 2 corresponding
to the qubits (omitting some global constants)

Heff ≈
2∑

i=1

[
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos(ϕi) cos
(ϕCJJ,i

2

)

+ ELCJJ

(ϕCJJ,i − ϕxCJJ(s))
2

2
+ ẼL

ϕ2
i

2

]
− ẼL (ϕx1(s)ϕ1 + ϕx2(s)ϕ2)

+
ELM

2

(L+ LCJJ/4)Leff

βeff
(1 + βeff)

(ϕ1ϕ2 − ϕx1(s)ϕ2 − ϕx2(s)ϕ1) , (4.21)

where

ẼL = EL

(
1 +

M2

(L+ LCJJ/4)Leff

βeff
1 + βeff

)
. (4.22)

In the following, we outline the mapping onto the qubit subspace as explained in Refs.
[Har+09b; Har+10a] and in the supplementary material of Ref. [Boi+16]. In addition,
we derive an expression for the external fluxes ϕxi , i = 1, 2, which we will use in the
simulation, and a relation between the coupling J in the Ising model and the external
flux ϕxCJJ,0. This relation has to be solved numerically to determine the value for ϕxCJJ,0

for a given value of J .
The part in square brackets in Eq. (4.21) is used to define the computational subspace

of qubit i = 1, 2. The instantaneous ground state |g(s)〉i and first excited state |e(s)〉i
of this part of the Hamiltonian with energies Eg(s) and Ee(s), respectively, span the
computational subspace of qubit i = 1, 2. However these states are not used as the
computational basis states. Diagonalization of the operator ϕi in the subspace spanned
by |g(s)〉i and |e(s)〉i yields the computational basis states |↑(s)〉i and |↓(s)〉i given by the
eigenvectors of ϕi in the subspace. These eigenvectors are given by

|g(s)〉i + |e(s)〉i√
2

,
|g(s)〉i − |e(s)〉i√

2
, (4.23)

where the state with the lower energy is defined as |↓(s)〉i and the state with the higher

energy is defined as |↑(s)〉i. In particular, the eigenvalues are given by ±Ip(s)/(2eẼL),
where e denotes the electron charge and Ip(s) the persistent current. Thus, the projection
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of the operator ẼLϕi onto the subspace is, in the {|↑(s)〉i, |↓(s)〉i}-basis, represented by
the Pauli-z operator σzi Ip(s)/(2e). The matrix which is diagonal in the {|g(s)〉i, |e(s)〉i}-
basis, is represented in the {|↑(s)〉i, |↓(s)〉i}-basis by −∆(s)σxi /2, where σxi is the Pauli-x
operator, and ∆(s) = Ee(s)−Eg(s) the energy difference between the ground state |g(s)〉i
and the first excited state |e(s)〉i. Thus, writing the Hamiltonian (corresponding to the
qubits) in the computational basis yields

Heff,sub ≈−
∆(s)

2
(σx1 + σx2 )−

Ip(s)

2e
(ϕx1(s)σ

z
1 + ϕx2(s)σ

z
2) +

E2
L

Ẽ2
L

M2I2p (s)

Leff

βeff
(1 + βeff)

σz1σ
z
2

− EL

ẼL

Ip(s)M
2

2e(L+ LCJJ/4)Leff

βeff
(1 + βeff)

(ϕx1(s)σ
z
2 + ϕx2(s)σ

z
1) . (4.24)

The term E2
Lβeff/(Ẽ

2
L(1+βeff)) is a strictly monotonically decreasing function in ϕxCJJ,0

for ϕxCJJ,0 ∈ [0, 3π/2] (see Appendix B.2). Thus, for ϕxCJJ,0 = 0, it reaches its maximum

γ = max
ϕx
CJJ,0

E2
L

Ẽ2
L

βeff
(1 + βeff)

=
β

1 + β

1
(
1 + M2

(L+LCJJ/4)Leff

β
1+β

)2 . (4.25)

Obviously, its infimum is smaller than −γ. Thus, we can find for each ϕxCJJ,0 with

−γ ≤ E2
L

Ẽ2
L

βeff
(1 + βeff)

≤ γ (4.26)

a unique J ∈ [−1, 1] such that

E2
L

Ẽ2
L

βeff
(1 + βeff)

= −Jγ. (4.27)

Inserting Eq. (4.27) into Eq. (4.24) yields

Heff,sub ≈−
∆(s)

2
(σx1 + σx2 )−

Ip(s)

2e
(ϕx1(s)σ

z
1 + ϕx2(s)σ

z
2)−

JγM2I2p (s)

Leff

σz1σ
z
2

+
ẼL
EL

JγIp(s)M
2

2e(L+ LCJJ/4)Leff

(ϕx1(s)σ
z
2 + ϕx2(s)σ

z
1) . (4.28)

By choosing

ϕxi (s) = hi
2eIp(s)M

2γ

Leff

, (4.29)

we can achieve that the terms proportional to hiσ
z
i and Jσz1σ

z
2 have the same prefactor:

Heff,sub ≈−
∆(s)

2
(σx1 + σx2 )−

I2p (s)M
2γ

Leff

(h1σ
z
1 + h2σ

z
2 + Jσz1σ

z
2)

+
ẼL
EL

Jγ2I2p (s)M
4

(L+ LCJJ/4)L2
eff

(h1σ
z
2 + h2σ

z
1) . (4.30)

48



4.2 Superconducting quantum interference device

Identifying

A(s) =
∆(s)

2
, (4.31a)

B(s) =
γM2I2p (s)

Leff

, (4.31b)

the effective Hamiltonian in the subspace can be written in the form

Heff,sub ≈ −A(s)(σx1 + σx2 )− B(s) (h1σ
z
1 + h2σ

z
2 + Jσz1σ

z
2)

+B(s)
ẼL
EL

γM2

(L+ LCJJ/4)Leff

J (h1σ
z
2 + h2σ

z
1) , (4.32)

which is, up to the last term, the annealing Hamiltonian Eq. (2.8) discussed in Chapter 2.
The last term has only a small contribution since L,Leff ≫ M . It represents a certain
kind of crosstalk between the qubits and the external fluxes controlling the other qu-
bit [Alb+15b; DWa19], i.e., qubit 1 is affected by the external flux ϕx2 (h2) which controls
qubit 2 and vice versa.

The mapping to the qubit model including the derivation of the function for the external
flux ϕxi (Eq. (4.29)) and the conditional equation for the external flux ϕxCJJ,0 (Eq. (4.27))
is also discussed in [Wil+20].
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Chapter 5

Simulations of quantum annealing with

SQUIDs

This chapter deals with the implementation and the results of the simulation of the
system discussed in Section 4.2. We start with the description of the discretization of the
Hamiltonian in two different bases for a single SQUID before we discuss the system of two
coupled SQUIDs with and without the tunable coupler. Apart from the decompositions of
the Hamiltonians, we also look at the verification of the product-formula implementation
and the determination of the values for the discretization parameters in space and time.
In addition, we outline a few procedures which we use to obtain and analyze the results
which are discussed subsequently. Finally, we compare our simulation results to results
obtained with the D-Wave 2000Q quantum annealer.

5.1 Discretization of the Hamiltonian

5.1.1 Coordinate basis

First, we start with the discussion of a single SQUID corresponding to a single qubit.
For this purpose, we look at Eq. (4.8). A majority of the terms in the Hamiltonian are
diagonal in the variables ϕ and ϕCJJ. The only non-diagonal terms are the derivatives.
Thus, the coordinate basis {|ϕCJJ ϕ〉 |ϕCJJ, ϕ ∈ R} is a reasonable choice of basis. For the
simulation, we have to discretize the variables. Hence, the basis states are given by

{|ϕCJJ ϕ〉 |ϕCJJ ∈ {ϕ(0)
CJJ, . . . , ϕ

(M−1)
CJJ }, ϕ ∈ {ϕ(0), . . . , ϕ(N−1)}},

where ϕ
(m)
CJJ = ϕmin

CJJ+m∆ϕCJJ and ϕ(n) = ϕmin+n∆ϕ with ϕmin, ϕmin
CJJ, ∆ϕ, ∆ϕCJJ, N and

M parameters that need to be determined in such a way that the discretization effects are
minimized while keeping memory requirements and computation time within reasonable
bounds. In this basis, three of the five terms of the Hamiltonian given in Eq. (4.8) are
diagonal. The only non-diagonal terms are the derivatives −EC∂2ϕ and −ECCJJ

∂2ϕCJJ
. We

have to discretize the derivatives, which we do by applying (central) finite differences to
the wave function Ψ(ϕ)

∂

∂ϕ
Ψ(ϕ) ≈ Ψ(ϕ+∆ϕ/2)−Ψ(ϕ−∆ϕ/2)

∆ϕ
, (5.1)
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5.1 Discretization of the Hamiltonian

d(ϕ
(m)
CJJ, ϕ

(n)) =
2EC
∆ϕ2

+
2ECCJJ

∆ϕ2
CJJ

− EJ cos
(
ϕ(n)

)
cos
(ϕ(m)

CJJ

2

)

+ EL

(
ϕ(n) − ϕx(s)

)2

2
+ ELCJJ

(
ϕ
(m)
CJJ − ϕxCJJ(s)

)2

2
, (5.7b)

A =
EC
∆ϕ2




0 1

1 0 1

1
. . . . . .
. . . 0 1

1 0




, (5.7c)

B =
ECCJJ

∆ϕ2
CJJ




0 1

1 0 1

1
. . . . . .
. . . 0 1

1 0




. (5.7d)

With the decomposition Eqs. (5.7a)-(5.7d), the product-formula algorithm is implemented
according to the method outlined in Section 3.2.

The state vector

|ψ〉 =
∞∫

−∞

dϕCJJ

∞∫

−∞

dϕψ(ϕCJJ, ϕ)|ϕCJJ ϕ〉 (5.8)

is given in its discretized form by

|ψ〉 =
M−1∑

m=0

N−1∑

n=0

ψ
ϕ
(m)
CJJ,ϕ

(n) |ϕ(m)
CJJ ϕ

(n)〉, (5.9)

where the coefficients ψ
ϕ
(m)
CJJ,ϕ

(n) are stored as an array of complex double precision num-

bers.
For the verification of the algorithm, the scaling of the local error as a function of the

size of the time step, as discussed in Section 3.3, is investigated. Fig. 5.2 shows the norm
of the difference between the state vector obtained with the product-formula algorithm
(ψPF(τ)) and the state vector obtained by (numerical) exact diagonalization (ψexact(τ))
by using the Linear Algebra PACKage LAPACK. The norm is expected to scale with τ k+1

where k denotes the order of the product-formula algorithm (see Section 3.3). The fitted
exponents agree very well with the expected exponents. Thus, we infer that the likelihood
for mistakes in the implementation is very low.

While for the verification of the implementation the parameters ϕmin, ϕmin
CJJ, ∆ϕ, ∆ϕCJJ

can be chosen more or less arbitrarily but reasonably (N and M should be rather small
to allow for the comparison with the exact diagonalization), we now have to choose these
parameters in such a way that they do not introduce discretization errors (i.e., the result
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5.1 Discretization of the Hamiltonian

where Hn(x) denote the Hermite polynomials, explicitly depend on time (annealing frac-
tion s) in such a way that the number states are always centered at the value of the
external flux ϕx(s) or ϕxCJJ(s). We denote this time-dependent basis transformation by
Υ(t). Since Υ(t) is time-dependent, we have to add an additional term to the Hamiltonian
(cf. Eq. (4.16c))

HSQUID → Υ(t)HSQUIDΥ
†(t)− iΥ(t)

(
∂

∂t
Υ†(t)

)
. (5.13)

Since the transformations are basically the same for both the ϕ- and ϕCJJ-space, we
present the calculation for ϕ only. For a single matrix element, we have

−i
(
Υϕ(t)

∂

∂t
Υ†
ϕ(t)

)

nn′

= −i
√
ξ

π

∫
dϕ

e−
ξ

2
(ϕ−ϕx(s))2

√
2n+n′n!n′!

Hn(
√
ξ (ϕ− ϕx(s))) ∂

∂t

(
e−

ξ

2
(ϕ−ϕx(s))2Hn′(

√
ξ (ϕ− ϕx(s)))

)

= −i
√
ξ

2

∂ϕx(s)

∂s

∂s(t)

∂t

(√
n δn,n′+1 −

√
n+ 1 δn,n′−1

)
, (5.14)

which yields the matrices

−iΥϕ(t)
∂

∂t
Υ†
ϕ(t) = −i

√
ξ

2

∂ϕx(s)

∂s

∂s(t)

∂t

(
a† − a

)
(5.15a)

−iΥϕCJJ
(t)

∂

∂t
Υ†
ϕCJJ

(t) = −i
√
η

2

∂ϕxCJJ(s)

∂s

∂s(t)

∂t

(
b† − b

)
, (5.15b)

where a† (a) and b† (b) denote the creation (annihilation) operators for the harmonic
oscillator in ϕ- and ϕCJJ-space, respectively. Due to the time dependence, the matrix
elements 〈n′| cos(ϕ)|n〉 and 〈m′| cos(ϕCJJ/2)|m〉 need to be re-computed at least every
few time steps, rendering the use of large bases infeasible (in fact Eqs. (5.15a) and (5.15b)
also depend on time, but they represent sparse matrices, and thus, they do not cause a
problem). For the parameters listed in Eqs. (5.5a) - (5.5c), ELCJJ

≫ EJ . Therefore, the
coupling term can be seen as a perturbation to the harmonic potential in the variable
ϕCJJ. However, EL < EJ which leads to the presumption that the number states are not
very well suited to represent the state vector in the variable ϕ. This is also confirmed
by the results shown in Fig. 5.6. The plot shows the marginal distributions ||ψ(n)||2 and
||ψ(m)||2 at the beginning of the annealing process (s = 0, red) and at the end (s = 1,
blue). While ||ψ(m)||2 is peaked at small m ≤ 2, i.e., the higher states (almost) do
not contribute and can thus be safely neglected, the distribution ||ψ(n)||2, which is also
centered at small n < 10 in the beginning, dissolves during the annealing process. As
a consequence, at the end of the annealing process, all simulated number states have
a considerable contribution. Possibly, even more states are necessary. However, the
simulation with 21 number states already takes longer than the one with 51 states in the
coordinate basis. Therefore, there is no advantage in using the number states to represent
ϕ, and we only use the number states to represent ϕCJJ and keep the coordinate basis to
represent ϕ. Then, the discretized Hamiltonian is a mixture of Eq. (5.4), Eq. (5.11) and
Eq. (5.15b):

〈m′ ϕ(n′)|H̃SQUID|mϕ(n)〉 = 〈m′ ϕ(n′)|HSQUID − iΥϕCJJ
(t)

(
∂

∂t
Υ†
ϕCJJ

(t)

)
|mϕ(n)〉
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5.1 Discretization of the Hamiltonian

where

Am =




a′(ϕ(0),m) − EC

∆ϕ2

− EC

∆ϕ2 a′(ϕ(1),m)
. . .

. . . . . . − EC

∆ϕ2

− EC

∆ϕ2 a′(ϕ(N−1),m)




=



a′(ϕ(0),m)

. . .

a′(ϕ(N−1),m)




︸ ︷︷ ︸
Dm

− EC
∆ϕ2




0 1

1 0
. . .

. . . . . . 1
1 0




︸ ︷︷ ︸
µ

, (5.18a)

a′(ϕ(n),m) = a(ϕ(n),m)− b(m,m,ϕ(n)), (5.18b)

Bm′,m =




b(m′,m, ϕ(0))
b(m′,m, ϕ(1))

. . .

b(m′,m, ϕ(N−1))



, (5.18c)

Gm′,m = Gm,m′ = − 1

ta

∂ϕxCJJ(s)

∂s

√
ηmax(m′,m)

2
IN . (5.18d)

Since

b(m′,m, ϕ(n)) = b(m,m′, ϕ(n))

= EJ cos
(
ϕ(n)

)
∞∫

−∞

e−η(ϕCJJ−ϕx
CJJ(s))

2

2m+m′m!m′!

√
η

π
Hm(
√
η (ϕCJJ − ϕxCJJ(s)))

×Hm′(
√
η (ϕCJJ − ϕxCJJ(s))) cos

(ϕCJJ

2

)
dϕCJJ, (5.19)

we have Bm′,m = Bm,m′ and we can choose the decomposition

H̃SQUID = D− IM ⊗ µ+





0 −i 0
i 0 0
0 0 0


⊗G0,1 +



0 1 0
1 0 0
0 0 0


⊗B0,1




+





0 0 0
0 0 −i
0 i 0


⊗G1,2 +



0 0 0
0 0 1
0 1 0


⊗B1,2


+



0 0 1
0 0 0
1 0 0


⊗B0,2 (5.20)
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5.1 Discretization of the Hamiltonian

the coordinate basis. Therefore, the matrix of the Hamiltonian for two SQUIDs is given
by

H2 = H̃SQUID,2 ⊗ IN·M + IN·M ⊗ H̃SQUID,1 +C, (5.22)

where

C = EM




(
ϕ
(0)
1 − ϕx1

)(
ϕ
(0)
2 − ϕx2

)
(
ϕ
(1)
1 − ϕx1

)(
ϕ
(0)
2 − ϕx2

)

. . . (
ϕ
(N−1)
1 − ϕx1

)(
ϕ
(N−1)
2 − ϕx2

)




= EM · IM⊗



ϕ
(0)
2 − ϕx2

. . .

ϕ
(N−1)
2 − ϕx2


⊗ IM⊗



ϕ
(0)
1 − ϕx1

. . .

ϕ
(N−1)
1 − ϕx1




(5.23)

is diagonal and can thus be included in the diagonal update. This leaves non-diagonal
terms only in HSQUID,i which were discussed in the previous section.

Two SQUIDs with an additional coupler

The extension to include an additional SQUID as coupler is not very different from the
extension to more SQUIDs functioning as qubits. However, we have to take into account
that the dependencies on the external fields for the coupler as well as the energies ELeff

,
EC0 , EJ0 , ELCJJ,0

, and ECCJJ,0
and the parameters for the discretization are different.

Thus, we denote the coupler’s discretization parameters by an index “0”. Keeping this in
mind, we can decompose the Hamiltonian

Htotal = IN0·M0 ⊗
(
H̃SQUID,2 ⊗ IN·M + IN·M ⊗ H̃SQUID,1 +C

)

+H̃SQUID,0 ⊗ I(N·M)2 +C01 +C02, (5.24)

where EM in C is here replaced by EM = ELM
2/((L+ LCJJ/4)Leff) and

C01 =
MEL
Leff

· IM0⊗



ϕ
(0)
0

. . .

ϕ
(N0−1)
0


⊗ IN·M2⊗



ϕ
(0)
1 − ϕx1

. . .

ϕ
(N−1)
1 − ϕx1


 ,

(5.25a)

C02 =
MEL
Leff

· IM0⊗



ϕ
(0)
0

. . .

ϕ
(N0−1)
0


⊗ IM⊗



ϕ
(0)
2 − ϕx2

. . .

ϕ
(N−1)
2 − ϕx2


⊗ IN·M.

(5.25b)

Since the matrices C, C01 and C02 are diagonal, we can add them to the diagonal parts
D of HSQUID,i and perform the update of all the diagonal matrices at once.
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Chapter 5 Simulations of quantum annealing with SQUIDs

These can be used to compute the probabilities |〈x2 x1|ψ〉|2 to find the system described
by the state vector |ψ〉 in the basis state |x2 x1〉.

In the case that the coupler is present, we can only obtain the density matrix in the
computational subspace ρqubits. The state vector is given as before but with two additional
degrees of freedom labeled by an index “0”

|ψ〉 =
∑

i0,i1,i2
m0,m1,m2

ψm0i0m2i2m1i1 |m0 ϕ
(i0)
0 m2 ϕ

(i2)
2 m1 ϕ

(i1)
1 〉. (5.30)

The density matrix ρSQUIDs of the system consisting of the two SQUIDs corresponding to
the qubits is obtained by performing the partial trace over the space of the coupler

ρSQUIDs = Trcoupler (|ψ〉〈ψ|) =
∑

i0,m0

〈m0 ϕ
(i0)
0 |ψ〉〈ψ|m0 ϕ

(i0)
0 〉

=
∑

i1,i2
m1,m2

∑

i′1,i
′
2

m′
1,m

′
2

∑

i0,m0

ψm0i0m2i2m1i1ψ
∗
m0i0m′

2i
′
2m

′
1i

′
1
|m2 ϕ

(i2)
2 m1 ϕ

(i1)
1 〉〈m′

2 ϕ
(i′2)
2 m′

1 ϕ
(i′1)
1 |.

(5.31)

The 4×4 - matrix of the qubit space is computed by projecting the density matrix ρSQUIDs

onto the subspace spanned by the basis vectors |x2 x1〉 (Eq. (5.28))

ρqubits =
∑

x1,x2
x′1,x

′
2

|x2 x1〉〈x2 x1|ρSQUIDs|x′2 x′1〉〈x′2 x′1|

=
∑

x1,x2
x′1,x

′
2

∑

i0,m0

∑

i1,i2
m1,m2

(ax1i1m1
)∗(ax2i2m2

)∗ψm0i0m2i2m1i1

︸ ︷︷ ︸
=:V

x1x2
i0m0

∑

i′1,i
′
2

m′
1,m

′
2

a
x′1
i′1m

′
1
a
x′2
i′2m

′
2
ψ∗
m0i0m′

2i
′
2m

′
1i

′
1
|x2 x1〉〈x′2 x′1|

=
∑

i0,m0

∑

x1,x2
x′1,x

′
2

V x1x2
i0m0

(
V
x′1x

′
2

i0m0

)∗
|x2 x1〉〈x′2 x′1|. (5.32)

An efficient way to compute this sum is outlined in pseudo code in algorithm 1. The
four diagonal elements of ρqubits contain the probabilities to measure the state of the two
SQUIDs in the four computational basis states, respectively. The probability of the ground
state of a particular problem Hamiltonian is later used as a measure of success. The trace
of ρqubits is used to compute the amount of leakage, which is given by 1−Tr(ρqubits). The
trace of (ρqubits)2 yields the purity of the state (Tr((ρqubits)2) = 1 for a pure state). We also
use Tr(ρqubitsO) to compute expectation values of the operator O in the computational
subspace.

5.2 Methods to estimate the annealing scheme

5.2.1 Computing the annealing scheme for a single qubit

In Section 5.1.2, we found that the Hamiltonian of the SQUID, using the time-dependent
basis of number states for the variable ϕCJJ, is given by

H̃SQUID = HSQUID − iΥϕCJJ

∂

∂t
Υ†
ϕCJJ

. (5.33)
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5.2 Methods to estimate the annealing scheme

Algorithm 1: Computing the qubit density matrix ρ

Data: N ,M,N0,M0 (the dimensions of ϕ- and ϕCJJ-spaces),
N ·M - dimensional vectors a↑ and a↓ (the states |↑〉 and |↓〉),
N 2 · M2 · N0 · M0 - dimensional vector ψ (the state vector |ψ〉)

Result: 4× 4 - matrix ρ (qubit density matrix)

initialization: V0, V1, V2, V3 = 0, ρ = 0
for i0 = 0, 1, . . . ,N0 − 1; m0 = 0, 1, . . . ,M0 − 1 do

for i1 = 0, 1, . . .N − 1; m1 = 0, 1, . . . ,M− 1 do
for i2 = 0, 1, . . .N − 1; m2 = 0, 1, . . . ,M− 1 do

V0 ← V0 + conj(a↓i1m1
a↓i2m2

)ψm0i0m2i2m1i1

V1 ← V1 + conj(a↓i1m1
a↑i2m2

)ψm0i0m2i2m1i1

V2 ← V2 + conj(a↑i1m1
a↓i2m2

)ψm0i0m2i2m1i1

V3 ← V3 + conj(a↑i1m1
a↑i2m2

)ψm0i0m2i2m1i1

end

end
for j1 = 0 . . . 3; j2 = 0 . . . 3 do

ρj1j2 ← ρj1j2 + Vj1 · conj(Vj2)
end

end

Under the assumption that leakage is negligible, we have for the state |ψ〉 and projectors
P = |↑(s)〉〈↑(s)|+ |↓(s)〉〈↓(s)| and Q = I − P the relations P |ψ〉 ≈ |ψ〉 and Q|ψ〉 ≈ 0.
Then, we can compute the effective Hamiltonian for a single qubit by projecting the
SQUID Hamiltonian onto the subspace and including a correction term due to the time
dependence of the projector P

i
∂

∂t
P |ψ〉 = i

∂P

∂t
|ψ〉+ iP

∂

∂t
|ψ〉 = i

∂P

∂t
|ψ〉+ PH̃SQUID|ψ〉

≈
(
i
∂P

∂t
+ PH̃SQUIDP

)
P |ψ〉. (5.34)

We can use this effective Hamiltonian to compute the functions A(s) and B(s) of the
annealing scheme for a single qubit: We diagonalize the single SQUID Hamiltonian with
ϕx = 0 at a time s to obtain the states |↑(s)〉 and |↓(s)〉 as discussed in Section 5.1.4.

The matrix elements of PH̃SQUIDP are then used to compute the annealing functions

A(s) =
1

2

(
〈↑(s)|H̃SQUID|↓(s)〉+ 〈↓(s)|H̃SQUID|↑(s)〉

)
(5.35a)

B(s) =
1

2

(
〈↑(s)|H̃SQUID|↑(s)〉 − 〈↓(s)|H̃SQUID|↓(s)〉

)
. (5.35b)

The remaining term ∂P/∂t vanishes for large annealing times ta →∞ as

∂P

∂t
=
∂P

∂s

∂s

∂t
=

1

ta

∂P

∂s
→ 0, (5.36)
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Chapter 5 Simulations of quantum annealing with SQUIDs

and our numerical results reveal that ∂P/∂s is already quite small compared to the other
elements.

This procedure can also be used for the two directly coupled SQUIDs, but unfortu-
nately, it cannot be applied when the coupling SQUID is present. Thus, we need different
methods to obtain an estimate of the annealing scheme in this case.

5.2.2 Comparing simulation data to approximate analytical
results from the qubit model

For s ≈ 1, the Hamiltonian of the ideal qubit system Eq. (2.8) is approximately given by
the problem Hamiltonian Eq. (2.7) since then A(s) ≈ 0. Considering the Hamiltonian at
a fixed time s0 close to one, the Hamiltonian, and thus the time-evolution operator, are
diagonal in the computational basis and the time-evolution operator for a time step τ is
given by

U(τ) = e−iτ(−B(s0))(h1σz
1+h2σ

z
2+Jσ

z
1σ

z
2)

= eiτB(s0)(h1+h2+J)|↑↑〉〈↑↑|+ eiτB(s0)(h1−h2−J)|↑↓〉〈↑↓|
+ eiτB(s0)(h2−h1−J)|↓↑〉〈↓↑|+ eiτB(s0)(J−h1−h2)|↓↓〉〈↓↓|. (5.37)

The time evolution of the state |++〉 = (|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉) /2 under the Hamilto-
nian at fixed s0 is given by

U(τ)|++〉 = 1

2

(
eiτB(s0)(h1+h2+J)|↑↑〉+ eiτB(s0)(h1−h2−J)|↑↓〉

+ eiτB(s0)(h2−h1−J)|↓↑〉+ eiτB(s0)(J−h1−h2)|↓↓〉
)
. (5.38)

The expectation values 〈σα1
1 σα2

2 〉 = 〈++|U †(τ)σα1
1 σα2

2 U(τ)|++〉 (α1, α2 ∈ {x, y, z, 0},
σ0 = I) at time τ can be calculated straightforwardly:

〈σx1 〉 = cos (2τJB(s0)) cos (2τh1B(s0)) , 〈σx2 〉 = cos (2τJB(s0)) cos (2τh2B(s0)) ,

〈σy1〉 =−cos (2τJB(s0)) sin (2τh1B(s0)) , 〈σy2〉 =−cos (2τJB(s0)) sin (2τh2B(s0)) ,

〈σz1〉 = 0, 〈σz2〉 = 0,

〈σx1σx2 〉 = cos (2τh1B(s0)) cos (2τh2B(s0)) , 〈σy1σy2〉 = sin (2τh1B(s0)) sin (2τh2B(s0)) ,

〈σx1σy2〉 =−cos(2τh1B(s0)) sin(2τh2B(s0)), 〈σy1σx2 〉 =−sin(2τh1B(s0)) cos(2τh2B(s0)),

〈σx1σz2〉 =−sin(2τh1B(s0)) sin(2τJB(s0)), 〈σz1σx2 〉 =−sin(2τh2B(s0)) sin(2τJB(s0)),

〈σy1σz2〉 =−cos(2τh1B(s0)) sin(2τJB(s0)), 〈σz1σy2〉 =−cos(2τh2B(s0)) sin(2τJB(s0)),

and 〈σz1σz2〉 = 0. (5.39)

We will focus only on the coupling strength, i.e., we set h1 = h2 = 0, and the only non-zero
expectation values are

〈σx1 〉 = 〈σx2 〉 = cos(2τJB(s0)), (5.40a)

〈σy1σz2〉 = 〈σz1σy2〉 = − sin(2τJB(s0)), (5.40b)

〈σx1σx2 〉 = 1. (5.40c)
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These are the analytical results for the expectation values of the ideal two-qubit system.
To compare with the results obtained by the simulation of the full flux model (Eq. (4.10))
at fixed s = 1 and for various values of J , we initialize the SQUIDs corresponding to
the qubits in the state |++〉 in the computational subspace and the coupling SQUID in
the ground state of the (uncoupled) SQUID Hamiltonian. Using the model Eq. (4.10),
we simulate the time evolution and use ρqubits derived in Section 5.1.4 to compute the
expectation values 〈σα1

1 σα2
2 〉 = Tr(ρqubitsσα1

1 σα2
2 ) for various time intervals to visualize the

time dependence. We can then plot the expectation values as a function of time and fit
the oscillation frequencies ΩJ = 2JB(s = 1) for different values of J . This procedure can
be used to verify the linear dependence on J (see Eq. (4.32)), and thus the validity of
Eq. (4.27) to transform a given value for J to a value for the external flux ϕxCJJ,0.

When investigating the case with s < 1 and thus A(s) > 0, we directly consider the
case with h1 = h2 = 0. For fixed s0, the qubit Hamiltonian is given by

Hqubit(s0) = −
∆(s0)

2
(σx1 + σx2 )− JB(s0)σ

z
1σ

z
2. (5.41)

Diagonalizing this Hamiltonian yields (writing ∆ = ∆(s0), B = B(s0))

Hqubit(s0) =




−
√
∆2 + J2B2

−JB
JB √

∆2 + J2B2


 , (5.42)

with eigenvectors given by

|ξ1〉 =
∆

2
√
∆2 + J2B2 − JB̟

(
|↑↑〉+ |↓↓〉+ ̟ − JB

∆
(|↑↓〉+ |↓↑〉)

)
, (5.43a)

|ξ2〉 =
1√
2
(|↑↑〉 − |↓↓〉) , (5.43b)

|ξ3〉 =
1√
2
(|↑↓〉 − |↓↑〉) , (5.43c)

|ξ4〉 =
∆

2
√
∆2 + J2B2 + JB̟

(
|↑↑〉+ |↓↓〉 − ̟ + JB

∆
(|↑↓〉+ |↓↑〉)

)
, (5.43d)

where we defined ̟ =
√
∆2 + J2B2.

The time evolution of the state |++〉 can be calculated by writing it in the new basis

|++〉 = ̟ + JB +∆

2
√
∆2 + J2B2 + JB̟

|ξ1〉+
̟ − JB −∆

2
√
∆2 + J2B2 − JB̟

|ξ4〉, (5.44)

and applying the time-evolution operator Us0(τ) = e−iτHqubit(s0) which results in the state

Us0(τ)|++〉 = eiτ̟
̟ + JB +∆

2
√
∆2 + J2B2 + JB̟

|ξ1〉+ e−iτ̟
̟ − JB −∆

2
√
∆2 + J2B2 − JB̟

|ξ4〉

=
1

2

(
cos(̟τ) +

∆ + JB

̟
i sin(̟τ)

)
(|↑↑〉+ |↓↓〉)

+
1

2

(
cos(̟τ) +

∆− JB
̟

i sin(̟τ)

)
(|↑↓〉+ |↓↑〉) . (5.45)
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In the same way as for A(s) ≈ 0, we can calculate the expectation values 〈σα1
1 σα2

2 〉
analytically, yielding

〈σx1 〉 = 〈σx2 〉 = cos2(̟τ) +
∆2 − J2B2

∆2 + J2B2
sin2(̟τ) (5.46a)

〈σy1〉 = 〈σy2〉 = 0 (5.46b)

〈σz1〉 = 〈σz2〉 = 0 (5.46c)

〈σx1σx2 〉 = 1 (5.46d)

〈σy1σy2〉 = −
2JB∆

∆2 + J2B2
sin2(̟τ) (5.46e)

〈σz1σz2〉 =
2JB∆

∆2 + J2B2
sin2(̟τ) (5.46f)

〈σx1σy2〉 = 〈σy1σx2 〉 = 0 (5.46g)

〈σx1σz2〉 = 〈σz1σx2 〉 = 0 (5.46h)

〈σy1σz2〉 = 〈σz1σy2〉 = −
2JB

̟
sin(̟τ) cos(̟τ). (5.46i)

The numerical evaluation of the expectation values for the full flux model Eq. (4.10) is
performed by using Tr(ρqubitsσα1

1 σα2
2 ) as discussed in Section 5.1.4. As mentioned previ-

ously, we can fit the analytical functions to the simulation data to obtain values for the
variables JB(s0) and ∆(s0). These can then be compared to the annealing scheme and
the validity of the effective Hamiltonian description can be assessed.

5.3 Analysis of the results

In this section, we present and analyze the simulation results obtained by using the
methods discussed in the previous sections of this chapter. We also discuss the results
in comparison to the results obtained from the ideal qubit model to address the question
whether an effective qubit description is appropriate.

Parts of the results presented in this section have been published in [Wil+20].

5.3.1 Effective coupling strength (s = 1)

As mentioned in Section 5.2.2, we can fit the analytical expressions for the expectation
values to the simulation data. From the fitting procedure, we can obtain values for
the products JB(s0), h1B(s0) and h2B(s0). To determine the coupling strength, we set
h1 = h2 = 0. In this way, the expectation values have a simpler time dependence and we
expect to obtain the best fitting results for ΩJ = JB(s0). We need ΩJ for different values
of J to verify that Eq. (4.27) yields a good value for ϕCJJ,0 for a given J .

We use Eq. (5.40b) for fitting JB(s0) as the sine gives a signed value in contrast to the
cosine (Eq. (5.40a)). Two example plots are shown in Figs. 5.15 and 5.16. We find that
the cosine and sine (and the expectation values 〈σx1σx2 〉 and 〈σy1σy2〉 which are supposed
to be constant) are modulated by the oscillations of the purity (see Section 5.1.4). We
conclude that the system of the SQUIDs corresponding to the qubits becomes entangled
with the coupler SQUID. The amplitude of the modulating oscillations is stronger for J →
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of the harmonic approximation of the coupler:

U(τ)|↓↑〉 ⊗ |0〉 = e−iτ(ωa
†a+cσz

1σ
z
2+g(σz

1+σ
z
2)(a†+a))|↓↑〉 ⊗ |0〉 = eiτc|↓↑〉 ⊗ |0〉, (5.48a)

U(τ)|↑↓〉 ⊗ |0〉 = eiτc|↑↓〉 ⊗ |0〉, (5.48b)

U(τ)|↑↑〉 ⊗ |0〉 = e−iτ(c+ωa
†a+2g(a†+a))|↑↑〉 ⊗ |0〉 = e

−iτ
(
c−4g2

ω

)

|↑↑〉 ⊗ | − 2g
ω

(
1− e−iωτ

)
〉,

(5.48c)

U(τ)|↓↓〉 ⊗ |0〉 = e−iτ(c+ωa
†a−2g(a†+a))|↓↓〉 ⊗ |0〉 = e

−iτ
(
c−4g2

ω

)

|↓↓〉 ⊗ |2g
ω

(
1− e−iωτ

)
〉,

(5.48d)

where |±2g
ω
(1− e−iωτ )〉 denote coherent states with |α〉 = e−|α|2/2∑∞

n=0 α
n/
√
n!|n〉. The

proof showing that the time evolution of |↑↑〉 ⊗ |0〉 and |↓↓〉 ⊗ |0〉 is indeed given by
Eq. (5.48c) and Eq. (5.48d), respectively, is presented in Appendix B.4. The time evolution
of the state |++〉 ⊗ |0〉 is then given by

|ψ(τ)〉 = U(τ)|++〉 ⊗ |0〉 = eiτc

2

(
(
|↑↓〉+ |↓↑〉

)
⊗ |0〉

+ e
−2iτ

(
c−2g2

ω

)
(
|↑↑〉 ⊗ | − 2g

ω

(
1− e−iωτ

)
〉+ |↓↓〉 ⊗ |2g

ω

(
1− e−iωτ

)
〉
)
)
. (5.49)

From this, we can obtain the density matrix in the qubit subspace by performing the
partial trace over the harmonic degrees of freedom

ρq(τ) = Tr (|ψ(τ)〉〈ψ(τ)|) =
∞∑

n=0

〈n|ψ(τ)〉〈ψ(τ)|n〉

=
1

4

(
(
|↑↓〉+ |↓↑〉

)(
〈↑↓|+ 〈↓↑|

)
+ e

2iτ

(
c−2g2

ω

)

e
−1
2

∣∣∣∣
2g
ω

(1−e−iωτ )

∣∣∣∣
2(
|↑↓〉+ |↓↑〉

)(
〈↑↑|+ 〈↓↓|

)

+e
−2iτ

(
c−2g2

ω

)

e
−1
2

∣∣∣∣
2g
ω

(1−e−iωτ )

∣∣∣∣
2(
|↑↑〉+ |↓↓〉

)(
〈↑↓|+ 〈↓↑|

)

+e
−
∣∣∣∣
2g
ω (1−e

−iωτ)
∣∣∣∣
2 ∞∑

n=0

(∣∣2g
ω
(1− e−iωτ )

∣∣2n

n!

(
|↑↑〉〈↑↑|+ |↓↓〉〈↓↓|

)

+
(−1)n

∣∣2g
ω
(1− e−iωτ )

∣∣2n

n!

(
|↑↑〉〈↓↓|+ |↓↓〉〈↑↑|

)
))

=
1

4

(
(
|↑↓〉+ |↓↑〉

)(
〈↑↓|+ 〈↓↑|

)
+ |↑↑〉〈↑↑|+ |↓↓〉〈↓↓|+ e−

16g2

ω2 (1−cosωτ)
(
|↑↑〉〈↓↓|+ |↓↓〉〈↑↑|

)

+e−
4g2

ω2 (1−cosωτ)

(
e
2iτ

(
c−2g2

ω

)
(
|↑↓〉+ |↓↑〉

)(
〈↑↑|+ 〈↓↓|

)
+ e

−2iτ

(
c−2g2

ω

)
(
|↑↑〉+ |↓↓〉

)(
〈↑↓|+ 〈↓↑|

)
))

.

(5.50)

As discussed previously, we can use Tr(ρq(τ)σ
α1
1 σα2

2 ) to compute the expectation values.
Now, we can also include effects caused by the coupling of the qubit system to the coupler,
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We find that the first modification (the modified annealing scheme) improves the agree-
ment between the results for the states |↑↓〉 and |↑↑〉 (green and black lines). Especially
at the end of the annealing process, the agreement is excellent. However, there is no
improvement for the state |↓↑〉 (blue line). On the other hand, the second modification
(adjusted hi) leads to very good agreement for this state. For the states |↑↓〉 and |↑↑〉,
the changes are also in the right direction, but too strong, leading to a similar amount of
disagreement as in the non-modified case but in the opposite direction. A combination of
both modifications is thus also too strong. A conclusion that can be made based on these
observations is that for J ≈ −1, there are additional effects in the flux model which are
not included in the qubit model and which weaken the influence of the modified annealing
scheme and the additional σz-terms, leading effectively to a result closer to the one of the
original qubit problem.

Fig. 5.24 shows the probabilities of the computational states during the annealing
process for five additional problem instances. We find that for problem instances with
a larger energy gap (see Fig. 5.24(a) and (b)) or small values of the hi (Fig. 5.24(c)),
including the additional σz-terms (dash-dotted lines) has almost no effect, as the dotted
lines (original problem instances) are almost on top of the dash-dotted lines. This is not
surprising as for large energy gaps, the small changes in the hi do not change the spectrum
significantly, and for small hi or small J , the effective changes in the hi become negligibly
small.

For a large energy gap and J = −1 (case (a)), the agreement with the qubit model
using the modified annealing scheme (dashed lines) is very good. The small deviations
that can be observed, are as in the case previously discussed, approaching the results from
the original qubit problem. In the case of a large energy gap but J = 1 (case (b)), we find
similar behavior but with an obvious difference: We still find that the overall agreement
is improved when using the qubit model with the modified annealing scheme. However,
in this case, the modification does not seem to be strong enough. Only at the end of the
annealing process, the success probability matches with the result of the original qubit
problem (dotted lines), but this might be a coincidence as there is also a small amount
(≈ 2%) of leakage. Taking also the observations from case (b) into account, we can
conclude that independent of the sign of J , the effects of the full flux model, which come
in addition to the modification of the annealing scheme, change the results in the same
direction.

In the case of small hi (case (c)), we find almost perfect agreement between the data
from the flux model (solid lines) and the data from the modified qubit model (dashed
lines). The only deviation may be due to the small amount (≈ 2%) of leakage. This
observation would lead to the conclusion that the deviations in the other cases are cor-
related with the rather large values of the parameters hi. However, in some cases with
small hi, we find very good agreement between the simulation data using Eq. (4.10) and
the modified qubit model only in the first part of the annealing process. In the vicinity
of the minimal energy gap, the simulation data start to deviate from the modified qubit
model and approach the data of the original qubit problem (see Fig. 5.24(d)).

In the case of a small minimal energy gap, J = 1 and large h1 ≈ −h2 (case (e)), we
find rather large deviations. Using the modified annealing scheme for the qubit model
does not lead to a big improvement. Including the additional σz terms even worsens the
mismatch. We can conclude that the effects due to the non-computational states in the
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5.3 Analysis of the results

Considering the energy spectra, we can explain the splitting of the red and blue data
points in Fig. 5.26. For the first class of problems (red) and minimal energy gaps ∆E '
1GHz, we observe Landau-Zener behavior (see Fig. 2.3(b) in Section 2.3). For small
minimal energy gaps, we find that the data points show deviations from the Landau-
Zener theory. However, in these cases, we still observe non-adiabatic transitions. As
long as the initial Hamiltonian Eq. (2.6) separates the energy levels, the ground state is
approximately given by the uniform superposition state of all four computational basis
states with small corrections due to the problem Hamiltonian Eq. (2.7) which, in this
region, can be regarded as a perturbation. The energy gap is approximately given by
∆(s) = 2A(s). At the end of the annealing process, when the contribution of the initial
Hamiltonian is reduced, that is A(s) = ∆(s)/2 → 0, the energy splitting is determined
by the energy levels of the problem Hamiltonian Eq. (2.7). If the minimal energy gap is
small, the system experiences a non-adiabatic transition and stays close to the ground
state determined by the Hamiltonian at the time of this transition and which is close to
the uniform superposition state. Thus, the success probability does not drop below 1/4.

A similar reasoning applies to the second class of problems (blue). We discuss this case
with an example. Consider the case where J is positive and close to one, h2 = 0, and
h1 = ε with ε small. In the beginning of the annealing process, the energy splitting is
again determined by the initial Hamiltonian where basically only the part proportional to
J of the problem Hamiltonian acts as a perturbation, yielding the uniform superposition
state as the ground state. For decreasing A(s) and increasing B(s), i.e, when JB(s) >
A(s) > εB(s), the problem Hamiltonian effectively splits the Hilbert space into the two
subspaces {|↑↑〉, |↓↓〉} and {|↑↓〉, |↓↑〉} with eigenvalues −JB(s) and JB(s), respectively.
The initial Hamiltonian can be regarded as a perturbation, causing a level splitting of
∆2(s)/(2JB(s)) within these subspaces. The ground state is then approximately given
by (|↑↑〉 + |↓↓〉)/

√
2. For further decreasing A(s) and increasing B(s), the level splitting

within the subspaces due to the initial Hamiltonian is further reduced and it is dominated
by the term proportional to ε of the problem Hamiltonian. For small ε, however, non-
adiabatic transitions dominate during the annealing process. The system stays then
approximately in the state (|↑↑〉 + |↓↓〉)/

√
2. Thus, even for small minimal energy gaps

∆E, the success probability does not drop below 1/2 for this class of problems.

Those cases that show larger deviations belong to the third class represented by the
green data points in Fig. 5.26, in particular to problems with parameters J ≈ 1, h1 ≈
−h2 ≈ ±1. The green data points show a larger spread than the red and blue ones and
explaining this only in terms of the energy spectrum seems difficult as the spectra for
points with higher as well as lower success probabilities look almost identical.

Therefore, we have to take into account the results presented in Ref. [MNK09], namely
that for quantum annealing with degenerate ground states, not all states are equally likely
to be sampled. The green data points, especially for smaller gap sizes, are close to the
three-fold degenerate cases with parameters h1 = −h2 = ±1, J = 1 or h1 = h2 = ±1,
J = −1. For larger gaps, the problem instances are not that close to these cases and the
spread in success probability is smaller (see Fig. 5.26). Let us consider the case J / 1, h1 =
J + ε1, h2 = −(J + ε2) as an example. The other cases work analogously. As mentioned
previously, in the beginning of the annealing process, the ground state is determined by
the initial Hamiltonian where the problem Hamiltonian acts as a perturbation. In the
region where JB(s) > A(s) > εiB(s), the ground state is basically determined by the
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part HJ = −JB(s)(σz1 − σz2 + σz1σ
z
2) of the problem Hamiltonian which has a three-fold

degenerate ground state. The basis states with the same energy −JB(s) are |↑↓〉, |↑↑〉
and |↓↓〉. Since in this vicinity (A(s) > εiB(s)), the initial Hamiltonian Eq. (2.6) rather
than the correction in εi of the problem Hamiltonian acts as a perturbation, the first
order corrections are in ∆(s) and we consider the initial Hamiltonian in the degenerate
eigenspace spanned by {|↑↓〉, |↑↑〉, |↓↓〉}:

H ′ = −∆

2



0 1 1
1 0 0
1 0 0


 . (5.52)

Diagonalizing this matrix gives the eigenvalue-eigenvector pairs

{
− ∆√

2
,

√
2|↑↓〉+ |↑↑〉+ |↓↓〉

2

}
,

{
0,
|↑↑〉 − |↓↓〉√

2

}
,

{
∆√
2
,

√
2|↑↓〉 − |↑↑〉 − |↓↓〉

2

}
.

(5.53)

The lowest energy state has a higher contribution in the direction of |↑↓〉, with a proba-
bility of 50% while |↑↑〉 and |↓↓〉 each only have a probability of 25% for being measured.
This means that if the system follows an adiabatic evolution, the probability to measure
the basis state |↑↓〉 is higher than for the other two basis states at this point. At the
end of the annealing process, the spectrum is determined by the problem Hamiltonian
including the corrections in εi. However, the energy splittings caused by the corrections in
εi are again rather small such that when ∆(s) → 0, the system undergoes non-adiabatic
transitions, staying close to the state |ψG〉 = (

√
2|↑↓〉+ |↑↑〉+ |↓↓〉)/2 with different prob-

abilities for the three computational states. This leads then to higher or lower success
probabilities depending on whether the final ground state is a state with higher or lower
probability in |ψG〉. For example if εi > 0, the ground state is given by |↑↓〉 and the
success probability is approximately 1/2. If ε1 > 0 > ε2, the ground state is |↑↑〉 with a
success probability of about 1/4.

Figure 5.29 shows the spectrum of the case J = 0.94, h1 = 0.99 and h2 = −1 (solid
lines) including the energies obtained by perturbation theory up to third order (see Ap-
pendix B.5) in the three regions: −A(s)Hinit determines the spectrum and HJ is the per-
turbation (dashed lines with crosses in the left region shaded in yellow), HJ determines
the spectrum and −A(s)Hinit and the corrections in εi are the perturbations (dash-dotted
lines with squares in the middle region shaded in pink), HP determines the spectrum and
−A(s)Hinit is the perturbation (dotted lines with bullet points in the right region shaded
in blue). Overlapping regions denote regions where neither of the applicable two versions
of perturbation theory works perfectly well as the magnitude of the perturbation term is
approximately of the same size as the Hamiltonian. Nevertheless, we find that the sepa-
ration into the three regions allows us to describe the energy spectrum by perturbation
theory very well and we can conclude that the reasoning with these three regions is a
good approximate description. We also see that the region of the minimal gap is located
where the transition between the second and third descriptions takes place.

Table 5.2 shows the numerical values for all cases plotted in Figs. 5.26 and 5.27. Looking
deeper into which cases show the discrepancies between the flux model with direct coupling
and the other two models (flux model with coupler and qubit model), we make two
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Table 5.2: Parameter values of the cases shown in Fig. 5.26, Fig. 5.27 and Fig. 5.34. a)
Success probability for the qubit system (ta = 5ns) b) success probability for the full
flux model with coupler (ta = 5ns) c) success probability for the flux model with directly
coupled SQUIDs (ta = 5ns) d) percentage of successful runs on D-Wave’s DW_2000Q_2
and DW_2000Q_2_1 chips (ta = 20µs, at least 10 reads).

h1 h2 J
minimal gap success probability in %
∆E in GHz a) b) c) d)

0.2 0.2 0.2 7.958914 99.9 99.5 99.8 99.7
0.2 −0.2 0 6.524809 99.8 99.6 99.7 95.8
0.3 −0.3 0.1 6.509859 99.9 99.6 99.9 96.2
0.1 −0.1 −0.1 4.817172 96.5 96.3 96.4 94.0
0.9 0.7 −1 4.660374 96.3 96.2 96.0 93.9
0.99 −0.8 1 4.367788 95.8 95.2 95.9 94.1
0.1 0.1 0 3.750846 93.0 92.8 92.9 80.5
0.3 0.3 −0.2 3.740396 96.2 96.2 95.9 81.4
0.07 −0.07 0 2.786031 82.1 81.6 82.0 66.8
0.07 0.07 0 2.786031 82.1 82.1 82.0 66.9
0.9 −0.8 1 2.766581 83.8 83.9 84.6 80.0
0.02 0.08 0.05 2.542547 77.7 77.6 77.6 71.2
0.99 −1 0.94 2.134413 84.8 57.9 66.8 48.3
0.05 0.05 0 2.092326 69.3 69.4 69.2 56.8
0 −0.05 0.05 1.585987 60.3 60.3 60.3 55.6
0 0.05 1 1.433807 69.0 67.6 68.6 64.4
0 0.05 −1 1.433807 69.0 69.1 68.6 65.3

0.01 0.04 0.025 1.419405 55.6 55.7 55.5 50.4
0.99 −1 0.96 1.366784 74.7 42.3 51.9 38.1
0.99 1 −0.96 1.366784 74.7 74.4 51.9 46.9
0.02 −0.02 −0.02 1.305954 51.1 50.6 51.1 43.8
0.02 0.02 0.02 1.305954 51.1 51.2 51.1 43.9
0.95 −0.99 0.98 1.145772 47.5 63.4 59.9 55.7
0.95 0.99 −0.98 1.145772 47.5 47.3 59.9 52.3
0.99 0.96 −1 1.018001 48.4 48.0 58.1 54.8
0.02 −0.02 0 0.939407 42.7 42.2 42.7 36.2
0 0.03 1 0.917871 61.8 60.8 61.5 59.0

0.96 −0.94 1 0.742309 50.7 57.5 56.2 55.1
0.96 0.94 −1 0.742309 50.7 50.0 56.2 54.0
0.98 −0.96 1 0.740480 45.4 56.3 54.0 53.4
0.98 0.96 −1 0.740480 45.4 44.7 54.0 51.0
0.01 −0.01 −0.01 0.716800 37.8 37.3 37.7 33.2
0.01 0.01 0.01 0.716800 37.8 38.0 37.7 33.9
0 0.02 −1 0.640932 57.9 57.8 57.7 57.0

0.01 0.009 0.002 0.543047 33.9 34.2 33.9 31.4
0.99 −1 0.98 0.510495 61.1 27.0 26.8 27.5
0.01 0.01 0 0.505201 33.5 33.8 33.5 31.7
0.99 −0.98 1 0.406202 35.3 49.3 46.1 47.2
0.99 0.98 −1 0.406202 35.3 34.6 46.1 45.6
0 −0.01 0.01 0.392828 33.0 33.2 33.0 31.6

0.005 0.005 0.005 0.388173 31.2 31.5 31.2 29.8
0.005 −0.005 −0.005 0.388173 31.2 30.7 31.2 29.1
0 0.01 1 0.343987 54.0 53.4 53.7 52.7
0 0.01 −1 0.343987 54.0 53.8 53.7 53.1

0.007 0 −0.01 0.302380 31.8 31.3 31.8 30.4
0.007 0 0.01 0.302380 31.8 32.0 31.8 30.5
1 0 −0.005 0.269309 54.0 53.1 54.0 52.8
1 0 0.005 0.269309 54.0 54.6 54.0 52.8

0.005 0.001 0.01 0.268263 31.4 31.6 31.4 30.2
0.005 −0.001 −0.01 0.268263 31.4 30.9 31.4 30.0
0.005 0 0.01 0.228548 30.9 31.2 30.9 29.6
0 0.005 0.5 0.193353 52.0 51.8 52.0 51.3
0 0.005 −0.5 0.193353 52.0 51.9 52.0 52.3

0.005 −0.001 0.01 0.187420 30.5 30.7 30.5 29.3
0.005 0.001 −0.01 0.187420 30.5 30.0 30.5 28.4
0 0.005 1 0.183074 52.0 51.5 51.8 50.7

0.005 0 −1 0.183074 52.0 51.8 51.8 50.7
0.003 0 0.01 0.145233 30.1 30.3 30.1 29.2
0 0.003 −1 0.114519 51.2 51.0 51.0 51.0
0 0.003 1 0.114519 51.2 50.8 51.0 50.186
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where ̺, ζ, ξ and ν ∈ C have to be determined by minimizing 〈ψVA|Htotal|ψVA〉 under the
constraint |̺|2+ |ζ|2+ |ξ|2+ |ν|2 = 1. This minimization corresponds to diagonalization of
the Hamiltonian Htotal projected onto the computational subspace and taking the smallest
energy eigenvalue, which corresponds to the consideration of the qubit model Hamiltonian.
According to the variational theorem, the minimal energy EVA found by this procedure,
is greater or equal to the true ground state energy E0. From the variational theorem, we
also know that if the ground state found with the variational ansatz |ψ̃VA〉 is close to the
true ground state of the system |ψ0〉, then the energy EVA is close to E0. However, if

we only know that the energy EVA is close to the energy E0, then the state |ψ̃VA〉 is not
necessarily close to the state |ψ0〉. Thus, our results suggest that the ground state of the
flux model does have some small contributions outside of the computational subspace,
whose magnitudes depend on the particular problem instance. Interestingly, the presence
of the coupler seems to compensate for these effects for the cases with J ≈ −1, since the
simulation results of the full flux model including the coupler nicely match with the results
of the qubit model, also for these close-to-degenerate cases. However, for the problem
instances with J ≈ 1, the effect seems to be enhanced (see Fig. 5.27 and Table 5.2). In
the following, we investigate the cause of the deviations in more detail.

Let us consider the Hamiltonian HCS of the computational subspace and the Hamilto-
nian HHL of the higher energy levels. At this moment, the coupler is not yet taken into
account. Then we can write the Hamiltonian of the flux model as

Htotal =

(
HCS λV
λV † HHL

)
, (5.55)

where the matrix V describes the coupling between the two subspaces and λ is considered
to be the small perturbation parameter. We can use the Schrieffer-Wolff transforma-
tion [SW66] to eliminate the coupling between the subspaces and obtain an effective
Hamiltonian for the computational subspace (since this is the part that we are inter-

ested in). In order to do so, we need to find a transformation matrix exp(−iS̃) such that

exp(iS̃)H exp(−iS̃) yields a block-diagonal matrix where the two subspaces are effectively
decoupled. We apply the procedure described in Ref. [Gam13]. To remove the coupling
to first order in λ, we have the condition for

S̃ =

(
0 S
S† 0

)
, (5.56)

that

i

[
S̃,

(
HCS 0
0 HHL

)]
= −

(
0 λV
λV † 0

)
. (5.57)

Which yields the equation (and its Hermitian conjugate)

HCSS − SHHL = −iλV. (5.58)

Equation (5.58) is the Sylvester equation which has a unique solution if and only if HCS

and HHL do not have common eigenvalues. Mostly, this is true in our case; however, we
found in Fig. 5.30(b) that during the annealing process the highest energy state of the
computational subspace attains an energy similar to the ones of some of the low energy
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states outside the computational subspace. Thus, we expect that at the crossing points
(and when the energies grow very close), if a solution of Eq. (5.58) exists, it is not unique.

This means that if a computational state has an energy close to the energy of one
or more states outside the computational subspace, these states cannot be (uniquely)
separated into two distinct subspaces with effectively no coupling. Therefore, in such a
case the method breaks down and we cannot use the Schrieffer-Wolff transformation to
obtain the block-diagonal effective Hamiltonian in this region.

Since S̃ is block off-diagonal (and linear in λ), terms quadratic in λ are only contained
in the block-diagonal parts and the effective Hamiltonian up to second order in λ is given
by

Heff =

(
HCS 0
0 HHL

)
− 1

2

[
S̃,

[
S̃,

(
HCS 0
0 HHL

)]]
+ i

[
S̃,

(
0 λV
λV † 0

)]
+O(λ3)

=

(
Heff

CS 0
0 Heff

HL

)
+O(λ3), (5.59)

where

Heff
CS = HCS −

1

2

(
SS†HCS +HCSSS

†)+ SHHLS
† + iλ

(
SV † − S†V

)
, (5.60a)

Heff
HL = HHL −

1

2

(
S†SHHL +HHLS

†S
)
+ S†HCSS + iλ

(
S†V − V †S

)
. (5.60b)

Since we have to construct the matrices V , S (which grow quadratically with the number of
considered states per SQUID) and HHL (which grows with a power of four), we implement
the Schrieffer-Wolff transformation with a variable number of states to be taken into
account and increase this number gradually until the computed effective Hamiltonian
saturates. We find that considering the 8 lowest states per (qubit-)SQUID is sufficient for
this purpose.

We use the Linear Algebra PACKage (LAPACK) to solve Eq. (5.58) numerically and
compute Heff

CS for a few test cases. We show two examples in Figs. 5.31 and 5.32. Panel (a)
shows the terms of the projected Hamiltonian (dashed lines) and the corresponding ones
of the effective Hamiltonian (solid lines). To make the differences more clear, we plot in
panel (b) the differences of the terms occurring in the effective Hamiltonian (terms which
are not shown are, up to numerical imprecision, equal to zero). In panel (c), we plot
the probabilities of the computational states in the instantaneous ground state. Large
deviations between the probabilities of the instantaneous ground states, corresponding
to the projected and the effective Hamiltonians, during the annealing process may also
indicate a deviation in the success probabilities for fast annealing if the minimal energy
gap is not large enough. Panel (d) shows the instantaneous energy spectrum during the
annealing process. Based on the results (not all data is shown), we make the following
observations.

• Some of the correction terms are independent of the signs of J and hi; for instance
the corrections proportional to σxi , if present, are positive.

• The magnitudes and the particular dependence on s of the correction terms depend
on the values of the parameters J and hi.
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the two directly coupled SQUIDs. We only have to replace EL by ẼL (see Eq. (4.22)) and
use Eq. (4.27) to replace βeff/(1 + βeff) by J .

For cases with J ≈ −1 and h1 ≈ h2 ≈ 1, we find that the combination of both effects
leads to a much smaller deviation than when both effects are treated separately. For
instance, A(s) appeared to be enlarged when including the coupler, but it is effectively
reduced when including the higher energy levels. And although the magnitude of the σzi -
and σz1σ

z
2-terms is in both cases reduced, the relative difference appears to be conserved

in the combined case. Thus, in these cases, the probabilities of the ground state for
the effective Hamiltonian Heff

CS including the replacement EL → ẼL are very close to the
probabilities of the ground state for the projected Hamiltonian Eq. (4.32) where EL is not

replaced by ẼL. This can be seen in Fig. 5.33(a)-(b) where the dash-dotted lines indicate
the projected Hamiltonian with EL, the dotted lines indicate the effective Hamiltonian
with EL, the dashed lines indicate the projected Hamiltonian with ẼL and the solid lines
indicate the effective Hamiltonian with ẼL. We see that for the probabilities, the solid lines
are much closer to the dash-dotted lines (which also correspond to the qubit Hamiltonian)
than the dotted lines. This suggests that for this case (and similar cases) the effects of the
coupler and the higher energy levels cancel each other (at least partially). We do not find
perfect agreement but this is not surprising since we used the approximate Hamiltonian
Eq. (4.21) and the Schrieffer-Wolff transformation only up to second order. However, the
qualitative agreement is apparent. Figures 5.33(c) and (f) show the instantaneous energy
spectrum with the spikes at the positions of the (avoided) level crossings with energy
levels outside the computational space for the two plotted example cases, respectively.

In those cases where J ≈ 1 and h1 ≈ −h2 ≈ ±1, we observe the opposite phenomenon:
A(s) (the negative of the prefactor of the σxi terms) is effectively even lower than expected

from the replacement EL → ẼL, see Fig. 5.33(d). Furthermore, the probabilities corre-
sponding to the projected Hamiltonian with EL (dash-dotted lines in Fig. 5.33(e)) differ

strongest from the probabilities corresponding to the effective Hamiltonian with ẼL (solid
lines). These observations also explain why the simulation results and the calculated an-

nealing function A(s) including ẼL (dashed lines in Figs. 5.21) do not match perfectly
well. The results obtained from the simulation include the correction terms induced by
the higher energy levels of the (qubit-)SQUIDs which effectively lower A(s) during the
annealing process in both cases. For cases with h1 = h2 = 0, the correction terms propor-
tional to σz1σ

z
2 are small compared to the corrections in σxi and there are no corrections in

σzi .

This unsymmetric feature is evidence that the higher energy levels in combination with
the shift of the inductive energy caused by the coupler are the reason for the unsymmetric
deviations in the success probabilities seen previously. These results also suggest that the
corrections due to the coupler and due to the higher energy levels are of a similar type
but, depending on the problem instance, with the same or opposite sign. This would
imply that both effectively change the inductive energy of the SQUID. In the case of the
coupler, this change of the inductive energy depends on the sign of J . In the case of the
higher energy levels, the change of the inductive energy would always be a reduction (at
least for this class of problem instances; for J = h1 = h2 = 1, we actually see an increase
which suggests that the sign and magnitude of the change depends on a combination of
J , h1 and h2).

Can we explain some of the reasons for these observations? The eigenvalues of ELϕi,
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which we labeled ±Ip/(2e), depend on the inductive energy. Thus, we should actually

label it I
(J)
p to make this clear. The external fields ϕxi are linear in Ip (see Eq. (4.29)),

i.e., they would in principle depend on the effective inductive energy of the SQUID. Since
providing each qubit with its own time-dependent signal is not practicable in a large-
scale experiment but ϕx of multiple qubits is controlled through the same control signal
(individual tuning is only needed for the time-independent parameter hi) [Har+10b],

we used the values for I
(0)
p computed from a single SQUID, i.e., with J = 0. In the

Hamiltonian Eq. (4.28) (including the dependence on s)

Heff,sub ≈−
∆(s)

2
(σx1 + σx2 )−

I
(J)
p (s)

2e
(ϕx1(s)σ

z
1 + ϕx2(s)σ

z
2)−

JγM2I
(J)
p (s)2

Leff

σz1σ
z
2

+
ẼL
EL

JγI
(J)
p (s)M2

2e(L+ LCJJ/4)Leff

(ϕx1(s)σ
z
2 + ϕx2(s)σ

z
1) , (5.61)

we then have two different values for I
(J)
p (s). Since all I

(J)
p (s) entering the annealing

function B(s), except the one in ϕxi (s), are obtained from the actual inductive energy,

only I
(0)
p (s) in

ϕxi (s) = hi
2eI

(0)
p (s)M2γ

Leff

= hi
2e(I

(J)
p (s) + ǫJ(s))M

2γ

Leff

(5.62)

is actually slightly different from the others with some J-dependent correction ǫJ . This
correction then only occurs in terms proportional to σzi

Heff,sub ≈−
∆(s)

2
(σx1 + σx2 )−

(
B(s) +

I
(J)
p (s)ǫJ(s)M

2γ

Leff

)
(h1σ

z
1 + hx2σ

z
2)− JB(s)σz1σ

z
2

+ JB(s)
ẼL
EL

(
1 + ǫJ(s)I

(J)
p (s)

−1
)
M2γ

(L+ LCJJ/4)Leff

(h1σ
z
2 + h2σ

z
1) . (5.63)

What would change if we had taken into account the change in I
(J)
p induced by the coupler?

The probabilities would follow more closely the dotted lines shown in Fig. 5.33(b) and
(e). That is, the deviations would be more symmetric like in the case without the coupler
(see also cyan squares in Fig. 5.27). The SQUIDs used by D-Wave Systems Inc. have an
integrated L-tuner which is an additional CJJ loop in the main loop and which is used to
undo effective changes in the inductance caused by the coupling [Har+10a]. Thus, results
from the real device may be closer to the results from the simulation without the coupler.

5.3.6 Brief summary of the results

Summarizing the results, we found that in most cases the two-level approximation works
very well with regard to the success probability and also the evolution during the annealing
process. We only found a few problem instances which showed larger deviations when
comparing the simulation results with the ideal qubit model. These instances were all
found to belong to a particular class and they all have in common that their ground state
is almost three-fold degenerate. Further investigation revealed that for these instances,
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Quantum annealing in the presence of

an environment

Although adiabatic quantum computation is considered to be more robust against noise
and decoherence than the gate model of quantum computation since the computation
takes place in the energy eigenbasis, the robustness turns out to be rather limited; it only
holds in certain cases such as weak coupling of the system to the environment or a Marko-
vian (i.e., almost “memoryless”) environment [CFP01; SL05; AJN06; ATA09; AAN09;
Joh+09; Har+10b; AL15]. Moreover, there seems to be an optimal annealing time which
maximizes the success probability in the case of open-system adiabatic quantum compu-
tation [AJN06; AL15]. In the closed-system case, the annealing time cannot be too long
with respect to the success probability as the success probability approaches one for infi-
nite annealing times. However, infinite annealing times would not be useful in practice.
In the open-system case and for weak coupling between the qubit system and the envi-
ronment, the success probability is expected to reach, in the limit of long annealing times,
the probability in thermal equilibrium at finite temperature [AL15] which may be large
enough (in contrast to the strong-coupling case where the success probability approaches
1/2N – the probability in thermal equilibrium at infinite temperature [AL15] – and there
is no advantage over random sampling). However, in the case where basically thermal
relaxation determines the success probability, there is no expected speedup (i.e., different
scaling and not only a potentially smaller prefactor) over classical algorithms [ALT08].

The debate about noise and decoherence also led to many studies tackling the question
if open-system adiabatic quantum computation or quantum annealing at finite tempera-
ture only performs classical thermalization (or if it can be described by some other clas-
sical model) or if it actually exhibits quantum features [Joh+11; Boi+13; SS13; Boi+14;
Shi+14; Alb+15a; Alb+15b; Boi+16].

Additionally, the case of thermally assisted quantum annealing has been studied [ALT08;
Dic+13; Arc+17]. In certain cases, such as in the case of a super-Ohmic environment, ther-
mal mixing at the avoided crossing may lead to an improved success probability [ALT08],
or fast annealing in the presence of transverse coupling to the environment may also lead
to an improvement in the success probability [Arc+17]. An experiment showing thermally
assisted quantum annealing has also been reported [Dic+13], quantum annealing at finite
temperature yielding higher success probabilities than expected from quantum annealing
at zero temperature.

For long annealing times, when the quantum annealer operates in the quasistatic
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Table 6.1: Percentage of successful outcomes (ground state) obtained from D-Wave’s
DW_2000Q_2 chip (1000 reads) for three different problem instances and four different
annealing times. The minimal and final gap (in GHz) are denoted by ∆Emin and ∆p,
respectively. The probabilities to find the ideal qubit system in the ground state for
ta ≥ 1µs is very close to 1 for all three cases.

Case J h1 h2 ∆Emin ∆p
Success rates in %

1µs 20µs 100µs 1ms

(a) −1 0.96 0.94 0.627 1.407 51.4 52.9 53.6 55.6
(b) 0.1 0.3 −0.3 5.481 14.07 92.5 96.2 97.6 98.5
(c) −1 0 0.05 1.206 3.519 63.0 65.6 67.1 69.7

regime [Ami15], the final probabilities may be determined by the Boltzmann distribu-
tion at an earlier time during the annealing process if there is a well-defined freeze-out
point late in the annealing process [Ami15; MRH17]. This is not always the case [MRH17]
but it was shown that for the class of problems studied in Ref. [Mar+19], inserting a pause
at an “optimal pause point”, which appeared to be quite generic for most instances shortly
after the minimum gap, led to an improved success probability. This could be explained
by thermal relaxation as the output distributions also often followed classical Boltzmann
distributions, which however relate to a different temperature than the operating temper-
ature [Mar+19].

In this chapter, we study quantum annealing in the presence of an environment by
solving the TDSE. We investigate two simple models and study the effects on the quantum
annealing process and the success probability. We also compare to what extent we can
reproduce the data obtained from the D-Wave 2000Q quantum annealer presented in
Fig. 5.34 in Section 5.3.7.

6.1 Motivation: Studying the D-Wave data

In this chapter, we focus on three different problem instances from the set studied in Sec-
tion 5.3.3. The problem instances and the success rates obtained from the DW_2000Q_2
chip for four different annealing times are listed in Table 6.1 along with the minimal en-
ergy gap ∆min and the energy gap ∆p at s = 1 for the D-Wave annealing scheme (see
Fig. 5.10(a), solid lines). We assume that these instances are representative cases of three
classes with different energy spectra. The energy spectra of the three cases are presented
in Fig. 6.1.

For the operating temperature of the D-Wave 2000Q quantum annealer of T ≈ 13mK,
which corresponds to an angular frequency of about 1.7GHz (we use kB = 1, see Ap-
pendix B.3 for the conversion between units), the energy differences between the ground
state and the first excited state show different features for the three cases. For case (a),
the energy gap between the two lowest states of the final Hamiltonian (s = 1) is still
smaller than the temperature (in GHz), for case (b), the (minimal) energy gap is much
larger than the temperature, and in case (c), the minimal energy gap is smaller than the
temperature but the energy gap at s = 1 is larger, see Fig. 6.2.

In equilibrium at inverse temperature β, the probabilities to measure the qubit system
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6.2 Modeling the environment

YNT10; Col+10; Pal+14; Gra+18]. Although superconducting circuits and resonators
turned out to be a useful tool to study noise and defect states in superconducting and
amorphous materials [Sim+04; Sha+10; Lis+15; MCL19] and many models have been
proposed that are capable of describing the noise and the resulting decoherence of the
qubits reasonably well, the question what exactly the sources, their microscopic origins
and their locations are could not yet be answered satisfactorily [Pal+14].

Various models based on spurious two-level systems which couple to the qubits have
been investigated with the aim to describe the qubits’ decoherence due to noise and
coupling to an environment [Shn+05; Gal+07; MSM09; Bur+14; Mül+15]. In particular,
these models reproduce the 1/f noise spectrum which is often observed in experiments
with superconducting qubits and circuits. Moreover, spectroscopy experiments showed
that two-level systems couple to superconducting qubits [Sim+04; Lup+09; Lis+15].

Models comprising two-level systems have already been used for many decades to de-
scribe low-temperature properties such as the linear scaling of the specific heat with tem-
perature in glasses and amorphous materials [Phi72; AHV72] where the model is inspired
by the idea that atoms in an amorphous material are thermally excited or can tunnel be-
tween two (almost) degenerate energy levels. For superconducting circuits, these models
may apply to the amorphous insulating barrier in the Josephson junctions, but also elec-
trons, surface spins and other possible origins [Pal+14; MCL19] have been studied as po-
tential sources of flux, charge and critical current noise in superconducting qubits [McD09;
BGA09].

In this chapter, we will use two simple models (I and II) based on two-level systems
which couple to the qubits to model the environment.

For the system-environment simulations discussed here, we adopt the qubit model for
the system. The motivation for this is that the simulation results for the full flux model
and the qubit model agree very well for the three instances listed in Table 6.1. Therefore,
we describe the system by the two-qubit Hamiltonian

HQ(s) = −A(s) (σx1 + σx2 )− B(s) (h1σ
z
1 + h2σ

z
2 + Jσz1σ

z
2) , (6.3)

where A(s) and B(s) are the annealing functions (in GHz) and h1, h2 and J are dimen-
sionless real numbers in the interval [−1, 1] and characterize the problem instance.

For the environment, we consider two different models. The first model (I) is a “generic
spin bath” and the second model (II) can be thought of as a collection of non-interacting
two-level defects which only couple to the qubit system. The Hamiltonian of the complete
system, qubits (Q) and environment (E), for the two models ι ∈ {I, II} reads

HT (s) = HQ(s) +HE,ι + λHQE,ι, (6.4)

where λ is a free parameter determining the overall coupling strength between the qu-
bits and the environment, HE,ι denotes the environment Hamiltonian and HQE,ι is the
interaction Hamiltonian of the qubits and the environment for model ι.

The state of the complete system |ψ(t)〉 evolves unitarily in time according to the
TDSE. This implies that the computational cost for solving the TDSE numerically for
the complete system is proportional to 2Nenv+2. However, if we need a statistical ensemble
as the initial state for the environment, for instance the canonical ensemble modeled
by the density matrix ρ0E = exp(−βHE,ι)/Z where Z = TrE exp(−βHE,ι) denotes the
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partition function and β is the inverse temperature, the computational cost to solve the
von Neumann equation

∂

∂t
ρ(t) = −i[H(t), ρ(t)], (6.5)

where ρ(t) denotes the density matrix of the whole system at time t, is proportional
to 2Nenv+2 × 2Nenv+2, which is prohibitive in practice. Fortunately, we can apply the
random state technology [Jin+20], also known as quantum dynamical typicality [BG09],
to compute expectation values of Hermitian operators at time t for “typical” pure states
instead of using the density matrix. We briefly outline the basic concept of the random
state technology: For a Hermitian operator A, it has been shown that [HD00]

TrA = D〈Φ|A|Φ〉+O
(

1√
D

)
, (6.6)

where D denotes the dimension of the Hilbert space (i.e., D = 2N) and |Φ〉 is a random
state (uniformly distributed on the D2-dimensional hypersphere). Using this relation,
one can show, that it is sufficient to prepare the environment in the pure state [Zha+16;
DeR+17]

|Ψ(β)〉 = e−βHE,ι/2|Ψ〉√
〈Ψ|e−βHE,ι |Ψ〉

, (6.7)

where |Ψ〉 is a randomly generated state of the environment, and solve the TDSE only
once. The result will, up to (small) statistical fluctuations, give the same expectation
values as the system evolved from the canonical ensemble. The statistical fluctuations
vanish with 1/

√
2Nenv which means that, for an environment that is large enough, these

fluctuations are negligible.
The expectation value of the Hermitian operator A at time t can be computed as

〈A(t)〉 = Tr (ρ(t)A) = Tr
(
Uρ(0)U †A

)
= Tr

(
ρ(0)U †AU

)
, (6.8)

where U is the unitary time evolution operator corresponding to the TDSE with the
Hamiltonian given in Eq. (6.4) and we used that the trace is invariant under cyclic per-
mutation of the operators. Since ρ(0) = |++〉〈++| ⊗ ρ0E = |++〉〈++| ⊗ exp(−βHE,ι)/Z
is a product state, we find

〈A(t)〉 = 1

Z
TrE

(
e−βHE,ιTrS

(
|++〉〈++|U †AU

))

=
1

Z
TrE

(
e−βHE,ι/2e−βHE,ι/2〈++|U †AU |++〉

)

=
1

Z
TrE

(
e−βHE,ι/2〈++|U †AU |++〉e−βHE,ι/2

)
. (6.9)

Using Eq. (6.6), to compute TrE we have

Z = TrEe
−βHE,ι ≈ DE〈Ψ|e−βHE,ι |Ψ〉, (6.10)
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6.3 Simulation results

Earlier studies of model I in the context of equilibration showed that the number of
environment spins primarily determines the magnitude of the statistical fluctuations due
to the approximation Eq. (6.6) [Zha+16]. Since a simulation run with an annealing time
ta = 1µs for a large environment of Nenv = 28 spins takes about a week on 64 compute
nodes on the supercomputer JUWELS [Jül19], we decided to use (for most of the runs) a
smaller environment of Nenv = 16 spins and average over a few runs with different random
numbers in the environment and interaction Hamiltonians, and the random state. In this
way, we can also avoid picking accidentally an unfortunate constellation of the random
environment and interaction parameters which are not representative. Moreover, on the
D-Wave quantum annealer, we also distribute 992 (976) copies of the two-qubit instances
over the 2000 qubit chip DW_2000Q_2 (DW_2000Q_2_1), so we expect that each of the
992 (976) copies solved simultaneously on the chip is affected by a different environment.

The determination of model parameters for the environment ({K,λ} for model I and
{Ω, λ} for model II) which reproduce the D-Wave data is not straightforward. Since the
runtime of a single simulation with ta = 1µs including Nenv = 16 environment spins is
still quite long (approximately 4 hours on JUWELS) and we need to average over a few
runs with different initializations of the random parameters, it is not practical to perform
a fit to the D-Wave data. Thus, we scan a “reasonable” range of the parameters and
investigate the behavior of the final probabilities of the qubit system depending on the
parameter choices. For some fixed sets of parameters, we study the properties of the
qubit-environment systems for all three cases listed in Table 6.1. Finally, we relate the
simulation results to the data obtained from the D-Wave quantum annealer.

Parts of the results presented in this section have been published in [Wil+20].

6.3.1 Results for the spin bath (model I)

We try several values for the intra-bath coupling strength K in the range [0.05, 15]GHz
for three different values of the qubit-bath coupling strength λ ∈ {0.1, 0.8, 1.5}GHz. The
results for the success probability are shown in Fig. 6.8 for all three cases and for the
inverse temperature β = 0.6 ns (corresponding to the temperature T ≈ 12.7mK, see
also Appendix B.3). We find that the dependence on the parameters K and λ is not
very systematic and sometimes shows strong variations. However, in all three cases we
find values for which the success probability coincides with or is close to the equilibrium
probability, whereas apart from a few settings only, in the tested ranges, the simulation
data do not match the data from the D-Wave quantum annealer very well. Specifically,
none of the tested settings yields results that match in all three cases.

Looking at the probabilities for the four computational states during the annealing
process for the different parameter settings {λ,K} (see example plots for a particular
initialization of the random numbers in Figs. 6.9, 6.10 and 6.11 for cases (a), (b) and (c),
respectively), we can classify the results into four different regions.

It is not easy to name definite ranges for λ and K, as “small” and “large” can have
quite a different meaning from case to case. For instance, in case (b), K = 0.5GHz and
λ = 0.8GHz are still small (almost no difference to the isolated case, see Fig. 6.10) but in
case (a), for this parameter setting large deviations from the ideal case can be observed
(see Fig. 6.9). Thus, we can only put the parameters into approximate ranges which can
be different for different cases.
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6.3 Simulation results

model II is more suited to reproduce the D-Wave data than model I is appropriate.
Since we observed very different behavior of the probability distributions describing the

qubit system during the annealing process it would be interesting to get such data for the
D-Wave quantum annealer to compare which model also captures more of the evolution
during the annealing process and not only the final probability distribution.

On the basis of the probabilities at the end of the annealing process only, it is impossible
to determine if the system equilibrated at some effective temperature 1/β∗ or if it was
in thermal equilibrium at the temperature 1/β before a freeze-out happened at a time s∗

(the freeze-out point). If freeze-out occurs, the final probabilities are then given by the
Boltzmann distribution at the time s∗. This distribution is equivalent to the one where no
freeze-out happens but the effective temperature is higher (β∗ is lower) since βB(s∗)Hfin =
β∗B(1)Hfin for β∗ = βB(s∗)/B(1) with B(s∗) < B(1). A similar argument in the context
of the optimal pause point is also given in Ref. [Mar+19]. Thus, to understand what
happens during the annealing process, only knowing the final distribution is not sufficient.
The “quenches” which are a relatively new feature of the D-Wave machine [DWa19] are not
applicable in our case as we already use the shortest possible annealing time of ta = 1µs.
Furthermore, it might be interesting to examine hybrid models comprising of a mixture of
model I and II, or to use a time-dependent coupling between the qubit and the environment
or a time-dependent energy of the environment which scale for instance with B(s), i.e.,
which change during the annealing process. Another option is to initialize the complete
qubit-environment system in thermal equilibrium and study the evolution or to explicitly
initialize the environment in a non-equilibrium state. We leave an analysis in this direction
for future research.
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Chapter 7

Summary and conclusion

In this thesis, we studied in detail the behavior of SQUID-based flux qubits during a
quantum annealing process by simulating, on conventional digital computers and super-
computers, the time evolution of the quantum system according to the time-dependent
Schrödinger equation. We focused on two aspects: the two-level approximation of the flux
variables describing the dynamics of the magnetic fluxes of the superconducting circuit,
and the influence of an environment coupling to the qubit system. For the investigation
regarding the first aspect, we simulated the dynamics of the flux variables and compared
the results obtained from projecting onto the qubit subspace to the results expected from
the ideal qubit model. Regarding the second aspect, we considered two different models
based on two-level systems for the environment. We studied their influence on the qubit
system and to what extent these models can be used to describe the data obtained from
the D-Wave 2000Q quantum annealer.

In Chapter 2, we outlined the basic aspects of the idea of quantum annealing [Fin+94;
Bro+99] and adiabatic quantum computation [Far+00; Far+01].

For our simulations, we used the Suzuki-Trotter product-formula algorithm [Suz76;
DeR87] which we reviewed in Chapter 3. After the description of the implementation of
the algorithm, we additionally derived an error bound for the evaluation of observables,
which is found to be tight.

In Chapter 4, we first reviewed the Josephson effect and the circuit quantization
rules [Dev97; Bis10]. Then, we introduced the SQUID Hamiltonian and the Hamiltonian
of three coupled SQUIDs where the middle SQUID serves as a tunable coupler [Har+09a]
between the other two SQUIDs functioning as the qubits. We also scrutinized the two-level
approximation of the flux model [Har+09b; Har+10a] to arrive at the qubit Hamiltonian
and found that the external fluxes which determine the parameters of the final Hamilto-
nian have to be specific functions of the annealing fraction or the desired coupling strength
J of the final Hamiltonian.

After we discussed the discretization of the flux model Hamiltonian and some technical
aspects at the beginning of Chapter 5, we presented our results of the flux model simu-
lation. We showed that the coupling strength J , extracted from the simulation, matches
the value used as input for the simulation very well when we use the function for the
external flux of the coupler obtained from the mapping to the qubit model. We computed
the effective qubit Hamiltonian during the annealing process for equidistant values of the
annealing fraction s, to obtain values of the effective annealing functions A(s) and B(s).
We compared these to the annealing functions computed from the single SQUID model
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Chapter 7 Summary and conclusion

and found that they differ slightly. The deviations depend on the coupling strength J ,
which is consistent with experimental observations that the coupling slightly changes the
effective inductance [Har+09a].

Our main conclusion regarding the comparison of the flux model and the qubit model
is that the two-level approximation works very well for most cases. Although leakage
to higher energy levels can be observed during the annealing process, the effects on the
final probabilities are small. However, we found a certain class of problem instances for
which the final probabilities of the two models deviate. The problem instances in this
class are close to having a frustrated Hamiltonian with a three-fold degenerate ground
state. We compared these results also to the ones obtained from the model of two directly
coupled SQUIDs to determine whether these effects are solely due to the presence of
the coupler. We found that the presence of the coupler introduces an asymmetry by
enhancing the effect if J is positive and reducing it if J is negative (and if the magnitudes
of J , h1 and h2 are not too small). The deviations between the final probabilities obtained
from the flux model and the qubit model were found to be a consequence of the higher
energy levels which lead to an effective Hamiltonian that differs slightly from the projected
Hamiltonian during the annealing process. This effective Hamiltonian then has a slightly
different energy spectrum and thus a minimal energy gap at a slightly different position
and/or of a slightly different size. This can lead to different transition probabilities (the
probability for a Landau-Zener transition [Lan32; Zen32] depends exponentially on the
gap size). But also at the end of the annealing process, the effective Hamiltonian has
correction terms proportional to σzi only, which then leads to an undesired imbalance
between the σzi - and σz1σ

z
2-terms. As a consequence, degeneracies can be lifted in the final

effective Hamiltonian.

We also compared the simulation results with data obtained from the D-Wave 2000Q
quantum annealer. Although for the flux model we only simulated the annealing process
for 5 ns while the minimum annealing time on the D-Wave 2000Q quantum annealer is
1µs, we found good agreement between the experimental data for ta = 20µs and the
simulation results for 5 ns. For annealing times of 1µs or longer, we would expect a
success probability, i.e, probability to measure the correct ground state at the end of
the annealing process, of about 100%. This disagreement with the expectation for 20µs
cannot be explained by the presence of the higher energy levels. Since neither the flux
model nor the qubit model contain an explicit environment, we studied in Chapter 6
which influence the presence of an environment composed of two-level systems has on the
annealing procedure and whether this is sufficient to explain the agreement of the D-Wave
data (for an annealing time ta = 20µs) with the flux model simulation for annealing time
ta = 5 ns.

We studied two models for the environment. The first one, model I, is a ring of two-
level systems with nearest-neighbor interaction and each of the two system qubits couples
to a random two-level system of the environment. This model with random interaction
strengths describes a generic spin bath [Jin+13; Zha+16]. The second model, model II,
consists of non-interacting two-level systems which couple to one of the two qubits each.
We found that for a suitable choice of model parameters, model II can produce data
which describes the observed frequencies of measured states obtained from the D-Wave
2000Q quantum annealer at the end of the annealing process. In the tested range of
parameters for model I, we did not find a set of model parameters which could reproduce
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the D-Wave data as nicely as model II. However, we found evidence that model I might
be well suited to thermalize the qubit system during a quantum annealing process to the
operating temperature. Moreover, we observed that the qubit system behaves differently
during the annealing process for the two different models I and II. While in the case of
model I, we observed occasionally that freeze-out [Joh+11; Ami15] (i.e., the quantum state
stops changing before the end of the annealing process) occurs, in the case of model II, the
probabilities of the computational states often appeared to follow probability distributions
of a system in thermal equilibrium of the instantaneous Hamiltonian but at an effectively
higher temperature than the operating temperature.

Although both models predict different time evolutions during the annealing process,
both models can produce similar final probability distributions. Thus, by only studying
the final probability distribution, we cannot infer which process is better suited to describe
the dynamics of the real device during the annealing process. This would be an interesting
point for future studies when future versions of quantum annealers provide the option to
measure the state during the annealing process and not only at the end.
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Appendix A

Circuit quantization of the studied

systems

A.1 Double SQUID

We use the circuit quantization rules [Dev97] discussed in Section 4.1.2 to derive the
Hamiltonian of the (symmetric) double SQUID Eq. (4.8). Figure A.1 shows the circuit of
a SQUID with CJJ loop. The circuit has four nodes including ground with corresponding
node fluxes Φa, Φb, Φc and Φground = 0 and five branch fluxes which we label φ1, φ2, φ3,
φ4 and φ5 as indicated in the figure. The external fluxes are denoted φ′x and φxCJJ. We
choose the branches connecting the nodes a, b and c to ground as tree branches. Thus,
the branch fluxes φ1, φ2 and φ5 correspond to tree branches and can be expressed by the
node fluxes as follows:

φ1 = Φa − Φground = Φa, (A.1)

φ2 = Φb − Φground = Φb, (A.2)

φ5 = Φc − Φground = Φc. (A.3)

Since the circuit has two closed loops, we have two closure branches which means that the
two corresponding fluxes φ3 and φ4 can be written in terms of the node fluxes as follows:

φ3 = Φc − Φa + φ′x + φxCJJ, (A.4)

φ4 = Φc − Φb + φ′x (A.5)

or in terms of the tree branch fluxes:

φ3 = φ5 − φ1 + φ′x + φxCJJ (A.6)

φ4 = φ5 − φ2 + φ′x. (A.7)

For the Lagrangian, we obtain by using the quantization rules

L =
C1

2
φ̇2
1 +

C2

2
φ̇2
2 + EJ cos(2eφ1) + EJ cos(2eφ2)−

1

L

φ2
5

2
− 1

LCJJ/2

φ2
3

2
− 1

LCJJ/2

φ2
4

2

=
C1

2
φ̇2
1 +

C2

2
φ̇2
2 + EJ cos(2eφ1) + EJ cos(2eφ2)−

1

L

φ2
5

2
− 1

LCJJ/2

(φ3 + φ4)
2 + (φ4 − φ3)

2

4
.

(A.8)
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A.1 Double SQUID

leads to the Lagrangian

L =
C1

2

(
φ̇+

φ̇CJJ

2

)2

+
C2

2

(
φ̇− φ̇CJJ

2

)2

+ EJ cos

(
2eφ+

2eφCJJ

2

)

+EJ cos

(
2eφ− 2eφCJJ

2

)
− 1

LCJJ

(φCJJ − φxCJJ)
2

2
− 1

L+ LCJJ/4

(2φ− 2φ′x − φxCJJ)
2

8

=
C1 + C2

2
φ̇2 +

C1 + C2

8
φ̇2
CJJ +

C1 − C2

2
φ̇φ̇CJJ + 2EJ cos(2eφ) cos

(
2eφCJJ

2

)

− 1

LCJJ

(φCJJ − φxCJJ)
2

2
− 1

L+ LCJJ/4

(φ− φ′x − φxCJJ/2)
2

2
. (A.15)

For convenience, we define

φx = φ′x +
φxCJJ

2
. (A.16)

Depending on the actual implementation of the CJJ-SQUID, this step may not be nec-
essary (the circuit quantization rules apply to two-dimensional circuits, if the design is
three-dimensional, the mapping is not unambiguous).

Assuming C1 ≈ C2 = C and performing the Legendre transformation

Q =
∂L
∂φ̇

= 2Cφ̇ ⇒ φ̇ =
Q

2C
, (A.17)

QCJJ =
∂L
∂φ̇CJJ

=
C

2
φ̇CJJ ⇒ φ̇CJJ =

2

C
QCJJ, (A.18)

we obtain the Hamiltonian of the system

H =
∂L
∂φ̇

φ̇+
∂L
∂φ̇CJJ

φ̇CJJ − L (A.19)

=
1

4C
Q2 +

1

C
Q2

CJJ − 2EJ cos(2eφ) cos

(
2eφCJJ

2

)

+
1

LCJJ

(φCJJ − φxCJJ)
2

2
+

1

L+ LCJJ/4

(φ− φx)2
2

. (A.20)

At this point, we can perform the quantization step with the operators φ and Q (and φCJJ

and QCJJ, accordingly) which fulfill [φ,Q] = i. Using dimensionless variables

φ =
φ0

2π
ϕ =

1

2e
ϕ, (A.21)

φCJJ =
1

2e
ϕCJJ, (A.22)

Q = 2en, (A.23)

QCJJ = 2enCJJ, (A.24)

and writing the Hamiltonian in ϕ-space, we finally get

H = −2e2

2C
∂2ϕ −

2e2

C/2
∂2ϕCJJ

− 2EJ cos(ϕ) cos
(ϕCJJ

2

)

+
1

4e2LCJJ

(ϕCJJ − ϕxCJJ)
2

2
+

1

4e2(L+ LCJJ/4)

(ϕ− ϕx)2
2

. (A.25)
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A.2 Coupled SQUIDs

where we have to use the minus sign as the current flow in opposite directions at the
“contact” assuming that the direction of the current is the same for each circuit. Thus,
instead of simply subtracting the terms for the potential energy φ2

5,X/(2LX) due to the
inductances LX to the Lagrangian (as done to arrive at Eq. (A.8)), we have to subtract
the terms for the potential energy given by

EABC =
1

2
LI25,A +

1

2
LI25,B +

1

2
LCI

2
5,C −MI5,AI5,C −MI5,BI5,C (A.33)

=
1

2

(
I5,A I5,C I5,B

)
L



I5,A
I5,C
I5,B


 (A.34)

=
1

2

(
φ5,A φ5,C φ5,B

)
L
−1



φ5,A

φ5,C

φ5,B


 . (A.35)

So we obtain for the Lagrangian

L =
∑

X∈{A,B,C}

(
C1,X

2
φ̇2
1,X +

C2,X

2
φ̇2
2,X + EJ (cos(2eφ1,X) + cos(2eφ2,X))

− 1

LCJJ,X/2

(
φ2
3,X

2
+
φ2
4,X

2

))
− 1

2

(
φ5,A φ5,C φ5,B

)
L

−1



φ5,A

φ5,C

φ5,B


 (A.36)

=
∑

X∈{A,B,C}

(
C1,X

2
φ̇2
1,X +

C2,X

2
φ̇2
2,X + EJ (cos(2eφ1,X) + cos(2eφ2,X))

− 1

LCJJ,X/2

(
φ2
3,X

2
+
φ2
4,X

2

))
− M2

L2L′φ5,Aφ5,B −
M

LL′ (φ5,A + φ5,B)φ5,C

− 1

L

(
1 +

M2

LL′

)
φ2
5,A

2
− 1

L

(
1 +

M2

LL′

)
φ2
5,B

2
− 1

L′
φ2
5,C

2
. (A.37)

Using Eqs. (A.6) and (A.7), which still hold for all SQUIDs, we get

L =
∑

X∈{A,B,C}

(
C1,X

2
φ̇2
1,X +

C2,X

2
φ̇2
2,X + EJ (cos(2eφ1,X) + cos(2eφ2,X))

− 1

LCJJ,X/2

(
2φ5,X + 2φ′x

X − φ1,X − φ2,X + φxCJJ,X

)2
+
(
φ1,X − φ2,X − φxCJJ,X

)2

4

)

− 1

L

(
1 +

M2

LL′

)
φ2
5,A

2
− 1

L

(
1 +

M2

LL′

)
φ2
5,B

2
− 1

L′
φ2
5,C

2

− M2

L2L′φ5,Aφ5,B −
M

LL′ (φ5,A + φ5,B)φ5,C . (A.38)

Again, we find that the Lagrangian does not depend on φ̇5,X , so from the Euler-Lagrange
equation we still find that

∂L
∂φ5,X

= 0. (A.39)
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However, instead of a single equation we have a system of equations (LCJJ,A = LCJJ,B =
LCJJ, LCJJ,C = Lco):

∂L
∂φ5,A

= − 1

LCJJ/4

2φ5,A + 2φ′x
A − φ1,A − φ2,A + φxCJJ,A

2

− 1

L

(
1 +

M2

LL′

)
φ5,A −

M2

L2L′φ5,B −
M

LL′φ5,C = 0 (A.40)

∂L
∂φ5,C

= − 1

Lco/4

2φ5,C + 2φ′x
C − φ1,C − φ2,C + φxCJJ,C

2
− 1

L′φ5,C −
M

LL′ (φ5,A + φ5,B) = 0

(A.41)

∂L
∂φ5,B

= − 1

LCJJ/4

2φ5,B + 2φ′x
B − φ1,B − φ2,B + φxCJJ,B

2

− 1

L

(
1 +

M2

LL′

)
φ5,B −

M2

L2L′φ5,A −
M

LL′φ5,C = 0 (A.42)

Solving this system of equations using Mathematica, we arrive at

φ5,A =
2L2(4L′ + Lco)

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(φ1,A + φ2,A − 2φ′x

A − φxCJJ,A)

− 2LLCJJM

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(φ1,C + φ2,C − φxCJJ,C − 2φ′x

C )

+
8LLCJJM

2(φ1,A + φ2,A − 2φ′x
A − φxCJJ,A − φ1,B − φ2,B + 2φ′x

B + φxCJJ,B)

(4L+ LCJJ)(L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2)
(A.43)

φ5,C =
8L′L2 + 4LCJJM

2 + 2LL′LCJJ

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(φ1,C + φ2,C − φxCJJ,C − 2φ′x

C )

− 2LLcoM(φ1,A + φ1,B + φ2,A + φ2,B − 2φ′x
A − 2φ′x

B − φxCJJ,A − φxCJJ,B)

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(A.44)

φ5,B =
2L2(4L′ + Lco)

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(φ1,B + φ2,B − 2φ′x

B − φxCJJ,B)

− 2LLccjM

L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2
(φ1,C + φ2,C − φxCJJ,C − 2φ′x

C )

+
8LLCJJM

2(φ1,B + φ2,B − 2φ′x
B − φxCJJ,B − φ1,A − φ2,A + 2φ′x

A + φxCJJ,A)

(4L+ LCJJ)(L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2)
. (A.45)

Substituting Eqs. (A.43) - (A.45) into Eq. (A.38) we obtain (using Mathematica):

L =
∑

X∈{A,B,C}

(
C1,X

2
φ̇2
1,X +

C2,X

2
φ̇2
2,X + EJ (cos(2eφ1,X) + cos(2eφ2,X))

− 1

LCJJ,X

(
φ1,X − φ2,X − φxCJJ,X

)2

2

)

− 1

8 (L+ LCJJ/4)

((
φ1,A + φ2,A − 2φ′x

A − φxCJJ,A

)2
+
(
φ1,B + φ2,B − 2φ′x

B − φxCJJ,B

)2)

−2LM2
(
φ1,A + φ2,A − 2φ′x

A − φxCJJ,A + φ1,B + φ2,B − 2φ′x
B − φxCJJ,B

)2

(L+ LCJJ/4) (L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2)
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−LM
(
φ1,A + φ2,A − 2φ′x

A − φxCJJ,A + φ1,B + φ2,B − 2φ′x
B − φxCJJ,B

) (
φ1,C + φ2,C − 2φ′x

C − φxCJJ,C

)

L(L+ LCJJ/4)(4L′ + Lco) + 2LCJJM2

−L(4L+ LCJJ)
(
φ1,C + φ2,C − 2φ′x

C − φxCJJ,C

)2

2 (L(4L+ LCJJ)(4L′ + Lco) + 8LCJJM2)
. (A.46)

As in the case of a single SQUID, we can perform the variable transformation

φX =
φ1,X + φ2,X

2
, φCJJ,X = φ1,X − φ2,X , (A.47)

φ1,X = φX +
φCJJ,X

2
, φ2,X = φX −

φCJJ,X

2
, (A.48)

which yields

L =
∑

X∈{A,B,C}

(
C1,X + C2,X

2
φ̇2
X +

C1,X + C2,X

8
φ̇2
CJJ,X +

C1,X − C2,X

2
φ̇X φ̇CJJ,X

+2EJ,X cos(2eφX) cos

(
2eφCJJ,X

2

)
− 1

LCJJ,X

(
φCJJ,X − φxCJJ,X

)2

2

)

− 1

L+ LCJJ/4

((
φA − φ′x

A − φxCJJ,A/2
)2

2
+

(
φB − φ′x

B − φxCJJ,B/2
)2

2

)

−M
2
(
φA − φ′x

A − φxCJJ,A/2 + φB − φ′x
B − φxCJJ,B/2

)2

2(L+ LCJJ/4)((L+ LCJJ/4)(LC + Lco/4)− 2M2)

−M
(
φA − φ′x

A − φxCJJ,A/2 + φB − φ′x
B − φxCJJ,B/2

) (
φC − φ′x

C − φxCJJ,C/2
)

(L+ LCJJ/4)(LC + Lco/4)− 2M2

− 1

LC + Lco/4− 2M2/(L+ LCJJ/4)

(
φC − φ′x

C − φxCJJ,C

)2

2
(A.49)

=
∑

X∈{A,B,C}

(
C1,X + C2,X

2
φ̇2
X +

C1,X + C2,X

8
φ̇2
CJJ,X +

C1,X − C2,X

2
φ̇X φ̇CJJ,X

+2EJ,X cos(2eφX) cos

(
2eφCJJ,X

2

)
− 1

LCJJ,X

(
φCJJ,X − φxCJJ,X

)2

2

)

− 1

L+ LCJJ/4

(
1 +

M2

(L+ LCJJ/4)Leff

)((
φA − φ′x

A − φxCJJ,A/2
)2

2
+

(
φB − φ′x

B − φxCJJ,B/2
)2

2

)

−
(
φC − φ′x

C − φxCJJ,C

)2

2Leff

− M2

(L+ LCJJ/4)2Leff

(
φA − φ′x

A −
φxCJJ,A

2

)(
φB − φ′x

B −
φxCJJ,B

2

)

− M

(L+ LCJJ/4)Leff

(
φA − φ′x

A −
φxCJJ,A

2
+ φB − φ′x

B −
φxCJJ,B

2

)(
φC − φ′x

C −
φxCJJ,C

2

)
,

(A.50)

where we used L′ = LC − 2M2/L and defined Leff = LC + Lco/4− 2M2/(L+ LCJJ/4).
Since the variables φ̇X and φ̇CJJ,X for differentX do not couple in Eq. (A.50), we can use

the same Legendre transformation as for a single SQUID, i.e., Eqs. (A.17) and (A.18) if we
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assume that C1,X ≈ C2,X = CX , and we arrive at the Hamiltonian (with φ′x
X +φxCJJ,X/2 =

φxX)

H =
∑

X∈{A,B,C}

(
1

4CX
Q2
X +

1

CX
Q2

CJJ,X − 2EJ,X cos(2eφX) cos

(
2eφCJJ,X

2

)
+

(
φCJJ,X − φxCJJ,X

)2

2LCJJ,X

)

+
1

L+ LCJJ/4

(
1 +

M2

(L+ LCJJ/4)Leff

)(
(φA − φxA)2

2
+

(φB − φxB)2
2

)

+
1

Leff

(φC − φxC)2
2

+
M2

(L+ LCJJ/4)2Leff

(φA − φxA) (φB − φxB)

+
M

(L+ LCJJ/4)Leff

(φA − φxA + φB − φxB) (φC − φxC) . (A.51)

Writing the Hamiltonian with dimensionless variables in ϕ-space yields

H =
∑

X∈{A,B,C}

(
− 2e2

2CX
∂2ϕX
− 2e2

CX/2
∂2ϕCJJ,X

− 2EJ,X cos(ϕX) cos
(ϕCJJ,X

2

))

+
1

4e2LCJJ

((
ϕCJJ,A − ϕxCJJ,A

)2

2
+

(
ϕCJJ,B − ϕxCJJ,B

)2

2

)
+

1

4e2Lco

(
ϕCJJ,C − ϕxCJJ,C

)2

2

+
1

4e2(L+ LCJJ/4)

(
1 +

M2

(L+ LCJJ/4)Leff

)(
(ϕA − ϕxA)2

2
+

(ϕB − ϕxB)2
2

)

+
1

4e2Leff

(ϕC − ϕxC)2
2

+
M2

4e2(L+ LCJJ/4)2Leff

(ϕA − ϕxA) (ϕB − ϕxB)

+
M

4e2(L+ LCJJ/4)Leff

(ϕA − ϕxA + ϕB − ϕxB) (ϕC − ϕxC) . (A.52)
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Appendix B

Additional calculations and proofs

This chapter contains calculations and proofs which are outsourced from Section 4.2 and
Chapter 5.

B.1 Basis transformation

Here, we present the calculation of the basis transformation applied in Section 4.2.2. The
total Hamiltonian where ϕCJJ,0 is replaced by its expectation value 〈ϕCJJ,0〉 is given by

H
〈ϕCJJ,0〉
total =

2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos (ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)

−EC0∂
2
ϕ0
− EJ0 cos (ϕ0) cos

(〈ϕCJJ,0〉
2

)
+ ELeff

ϕ2
0

2

+EL

(
1 +

M2

(L+ LCJJ/4)Leff

)(
(ϕ1 − ϕx1)2

2
+

(ϕ2 − ϕx2)2
2

)

+
M2EL

(L+ LCJJ/4)Leff

(ϕ1 − ϕx1) (ϕ2 − ϕx2) +
MEL
Leff

(ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0, (B.1)

and the change-of-basis matrix T is given by

T = iα(ϕ1 − ϕx1 + ϕ2 − ϕx2)∂ϕ0 , (B.2)

yielding the following commutators:

[iT,H
〈ϕCJJ,0〉
total ] = αEC∂ϕ0 [ϕ1 + ϕ2, ∂

2
ϕ1

+ ∂2ϕ2
]

+ αEJ0 cos

(〈ϕCJJ,0〉
2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2) [∂ϕ0 , cos (ϕ0)]

− α (ϕ1 − ϕx1 + ϕ2 − ϕx2) [∂ϕ0 ,
ELeff

2
ϕ2
0 +

MEL
Leff

(ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0]

= −2αEC∂ϕ0 (∂ϕ1 + ∂ϕ2)− αEJ0 cos
(〈ϕCJJ,0〉

2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2) sin(ϕ0)

− α (ϕ1 − ϕx1 + ϕ2 − ϕx2)
(
ELeff

ϕ0 +
MEL
Leff

(ϕ1 − ϕx1 + ϕ2 − ϕx2)
)

(B.3)
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[iT, [iT,H
〈ϕCJJ,0〉
total ]] = 2α2EC∂

2
ϕ0
[ϕ1 + ϕ2, ∂ϕ1 + ∂ϕ2 ]

+ α2EJ0 cos

(〈ϕCJJ,0〉
2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)2 [∂ϕ0 , sin(ϕ0)]

+ α2ELeff
(ϕ1 − ϕx1 + ϕ2 − ϕx2)2 [∂ϕ0 , ϕ0]

= −4α2EC∂
2
ϕ0

+ α2EJ0 cos

(〈ϕCJJ,0〉
2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)2 cos(ϕ0)

+ α2ELeff
(ϕ1 − ϕx1 + ϕ2 − ϕx2)2 (B.4)

[iT, [iT, [iT,H
〈ϕCJJ,0〉
total ]]] = −α3EJ0 cos

(〈ϕCJJ,0〉
2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)3 [∂ϕ0 , cos(ϕ0)]

= α3EJ0 cos

(〈ϕCJJ,0〉
2

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)3 sin(ϕ0) (B.5)

For the missing commutators, we show by using

[iT,H]n = [iT, [iT, . . . [iT︸ ︷︷ ︸
n times

, H]]], (B.6)

that is, for instance [iT,H]2 = [iT, [iT,H]], that for n ∈ N, n ≥ 1

[iT,− cos(ϕ0)]
2n−1 = (−1)nα2n−1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n−1 sin(ϕ0) (B.7)

[iT,− cos(ϕ0)]
2n = (−1)n+1α2n (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n cos(ϕ0). (B.8)

First, we show the base case with n = 1:

[iT,− cos(ϕ0)]
1 = (−1)1α1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)1 sin(ϕ0) (B.9)

[iT,− cos(ϕ0)]
2 = (−1)2α2 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2 cos(ϕ0) (B.10)

We now show that if Eqs. (B.7) and (B.8) hold for n ∈ N, n ≥ 1, Eqs. (B.7) and (B.8)
also hold for n+ 1:

[iT,− cos(ϕ0)]
2(n+1)−1 = [iT,− cos(ϕ0)]

2n+1 = [iT, [iT,− cos(ϕ0)]
2n]

Eq. (B.8)
= (−1)n+1α2n (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n [iT, cos(ϕ0)]

= (−1)n+2α2n+1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n+1 [∂ϕ0 , cos(ϕ0)]

= (−1)n+1α2(n+1)−1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2(n+1)−1 sin(ϕ0) (B.11)

[iT,− cos(ϕ0)]
2(n+1) = [iT,− cos(ϕ0)]

2n+2 = [iT, [iT,− cos(ϕ0)]
2(n+1)−1]

Eqs. (B.7),(B.11)
= (−1)n+1α2n+1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n1 [iT, sin(ϕ0)]

= (−1)n+2α2n+2 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n+2 [∂ϕ0 , sin(ϕ0)]

= (−1)n+2α2(n+1) (ϕ1 − ϕx1 + ϕ2 − ϕx2)2(n+1) cos(ϕ0) (B.12)

This proves Eqs. (B.7) and (B.8) by induction.
Using Eqs. (B.7) and (B.8), we can evaluate the sum

∞∑

n=1

1

n!
[iT,− cos(ϕ0)]

n =
∞∑

n=1

1

(2n− 1)!
[iT,− cos(ϕ0)]

(2n−1) +
1

(2n)!
[iT,− cos(ϕ0)]

(2n)
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=
∞∑

n=0

1

(2n+ 1)!
(−1)n+1α2n+1 (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n+1 sin(ϕ0)

+
∞∑

n=1

1

(2n)!
(−1)n+1α2n (ϕ1 − ϕx1 + ϕ2 − ϕx2)2n cos(ϕ0)

= − sin (α(ϕ1 − ϕx1 + ϕ2 − ϕx2)) sin(ϕ0)

− cos (α (ϕ1 − ϕx1 + ϕ2 − ϕx2)) cos(ϕ0) + cos(ϕ0)

= − cos (α (ϕ1 − ϕx1 + ϕ2 − ϕx2)− ϕ0) + cos(ϕ0). (B.13)

Finally, we obtain

eiTH
〈ϕCJJ,0〉
total e−iT = H

〈ϕCJJ,0〉
total +

∞∑

n=1

1

n!
[−iT,H〈ϕCJJ,0〉

total ]n

=
2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos (ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)

−EC0∂
2
ϕ0
− EJ0 cos (ϕ0) cos

(〈ϕCJJ,0〉
2

)
− 2αEC∂ϕ0 (∂ϕ1 + ∂ϕ2)

+EL

(
1 +

M2

(L+ LCJJ/4)Leff

)(
(ϕ1 − ϕx1)2

2
+

(ϕ2 − ϕx2)2
2

)
+ ELeff

ϕ2
0

2

+
M2EL

(L+ LCJJ/4)Leff

(ϕ1 − ϕx1) (ϕ2 − ϕx2) +
MEL
Leff

(ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0

−α (ϕ1 − ϕx1 + ϕ2 − ϕx2)
(
ELeff

ϕ0 +
MEL
Leff

(ϕ1 − ϕx1 + ϕ2 − ϕx2)
)

−2α2EC∂
2
ϕ0

+
α2ELeff

2
(ϕ1 − ϕx1 + ϕ2 − ϕx2)2 + EJ0 cos

(〈ϕCJJ,0〉
2

)
cos(ϕ0)

−EJ0 cos
(〈ϕCJJ,0〉

2

)
cos (α (ϕ1 − ϕx1 + ϕ2 − ϕx2)− ϕ0)

=
2∑

i=1

(
− EC∂2ϕi

− ECCJJ
∂2ϕCJJ,i

− EJ cos (ϕi) cos
(ϕCJJ,i

2

)
+ ELCJJ

(ϕCJJ,i − ϕxCJJ)
2

2

)

−(EC0 + 2α2EC)∂
2
ϕ0

+

(
MEL
Leff

− αELeff

)
(ϕ1 − ϕx1 + ϕ2 − ϕx2)ϕ0

+EL

(
1 +

M2

(L+ LCJJ/4)Leff

+ α2L+ LCJJ/4

Leff

− 2α
M

Leff

)(
(ϕ1 − ϕx1)2

2
+

(ϕ2 − ϕx2)2
2

)

+ELeff

ϕ2
0

2
+

(
M2EL

(L+ LCJJ/4)Leff

+ α2ELeff
− 2α

MEL
Leff

)
(ϕ1 − ϕx1) (ϕ2 − ϕx2)

−2αEC∂ϕ0 (∂ϕ1 + ∂ϕ2)

−EJ0 cos
(〈ϕCJJ,0〉

2

)
cos (α (ϕ1 − ϕx1 + ϕ2 − ϕx2)− ϕ0) , (B.14)

which we use in the basis transformation.
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B.2 Monotonicity

In this appendix, we prove the following statement which we used in Section 4.2.3.

(S1) The function

γ(ϕxCJJ,0) =
E2
L

Ẽ2
L(ϕ

x
CJJ,0)

βeff(ϕ
x
CJJ,0)

1 + βeff(ϕxCJJ,0)

is strictly monotonically decreasing in ϕxCJJ,0 for 0 ≤ ϕxCJJ,0 ≤ 3π/2.

Proof: To prove (S1), we show that ∂ϕx
CJJ,0

γ(ϕxCJJ,0) < 0 for 0 < ϕxCJJ,0 < 3π/2.
First we apply the chain rule to look at the derivative in two parts:

∂γ

∂ϕxCJJ,0

=
∂γ

∂βeff

∂βeff
∂ϕxCJJ,0

. (B.15)

For the first part we have with β = EJ0/ELeff
> 0

∂βeff
∂ϕxCJJ,0

=
∂

∂ϕxCJJ,0

(
β cos

(
ϕxCJJ,0

2
− EJ0 sin

(
ϕxCJJ,0/2

)

4ELCJJ,0
+ EJ0 cos

(
ϕxCJJ,0/2

)
))

= −β sin
(
ϕxCJJ,0

2
− EJ0 sin

(
ϕxCJJ,0/2

)

4ELCJJ,0
+ EJ0 cos

(
ϕxCJJ,0/2

)
)

×
16E2

LCJJ,0
+ 4ELCJJ,0

EJ0 cos
(
ϕxCJJ,0/2

)
− E2

J0
sin2

(
ϕxCJJ,0/2

)

2
(
4ELCJJ,0

+ EJ0 cos
(
ϕxCJJ,0/2

))2 . (B.16)

Since the denominator is positive and β > 0 as well as

16E2
LCJJ,0

+ 4ELCJJ,0
EJ0 cos

(
ϕxCJJ,0/2

)
− E2

J0
sin2

(
ϕxCJJ,0/2

)

≥ 16E2
LCJJ,0

− EJ0(4ELCJJ,0
+ EJ0) ≥ 16E2

LCJJ,0
− 5ELCJJ,0

EJ0 ≥ 11E2
LCJJ,0

> 0, (B.17)

because ELCJJ,0
> EJ0 , we only have to look at the sign of the sine. For 0 < ϕxCJJ,0 < 2π,

the sine is positive (because ELCJJ,0
> EJ0 and therefore the denominator is positive and

larger than EJ0). Thus, we have

∂βeff
∂ϕxCJJ,0

< 0 for 0 < ϕxCJJ,0 < 2π. (B.18)

The next step is to look at

∂

∂ϕxCJJ,0

(
βeff

1 + βeff

)
=

∂

∂βeff

(
βeff

1 + βeff

)
∂βeff
∂ϕxCJJ,0

=
1

(1 + βeff)2
∂βeff
∂ϕxCJJ,0

(B.19)

which is negative for 0 < ϕxCJJ,0 < 3π/2 and if β < 2 (which is true for our set of
parameters; and the offset in the cosine actually is in our favor) as the derivative diverges
for βeff → −1. Since βeff/(1 + βeff) is strictly monotonically decreasing, we can infer that
its maximum is at ϕxCJJ,0 = 0 yielding β/(1 + β) ≤ 1.

138



B.3 Computing energies from device parameters

The final step is to compute the derivative

∂γ

∂βeff
=

∂

∂βeff




1
(
1 + M2

LLeff

βeff
1+βeff

)2
βeff

1 + βeff


 =

∂

∂βeff




βeff + β2
eff(

1 + βeff + M2

LLeff
βeff

)2




=
1 + βeff − M2

LLeff
βeff

(
1 + βeff + M2

LLeff
βeff

)3 =
1 + βeff

(
1− M2

LLeff

)

(
1 + βeff

(
1 + M2

LLeff

))3 . (B.20)

For βeff > −1/(1 +M2/(LLeff)), the denominator is positive and for the numerator we
have

1 + βeff

(
1− M2

LLeff

)
≥ 1−

1− M2

LLeff

1 + M2

LLeff

=
2M2

LLeff

> 0. (B.21)

This only puts a slightly tighter condition on β < 2/(1 +M2/(LLeff)).

Thus, under the conditions ELCJJ,0
> EJ0 and β < 2/(1 + M2/(LLeff)) (which are

satisfied for our set of parameters), γ(ϕxCJJ,0) is strictly monotonically decreasing.

B.3 Computing energies from device parameters

For the energies, we list the conversion from SI units to GHz:

EL =
1

4e2L
=

C

4eL[nH]× 10−9eVs× s
=

6.58211928× 10−16 × 109

4× 1.6021766208× 10−19L[nH]s
=

1027.058939

L[nH]
GHz

(B.22)

EC =
2e2

C
=

2e× eV
C[fF] C× 10−15

=
2× 1.6021766208× 10−19

6.58211928× 10−16 × C[fF]× 10−15s
=

486.826979

C[fF]
GHz

(B.23)

EJ =
Ic
2e

=
Ic[µA]× 10−6 C

2e× s
=

Ic[µA]× 10−6

2× 1.6021766208× 10−19 s
= 3120.75456× Ic[µA]GHz

(B.24)

Eth =
kBT

~
=

1.380649× 10−23 J/K× T [mK]× 10−3 K

1.054571817× 10−34 Js
= 0.130920339× T [mK]GHz

(B.25)

B.4 Time evolution of the coupler

In this section we show that

e−iτ(ωa
†a±2g(a†+a))|0〉 = eiτ

4g2

ω |∓2g
ω

(
1− e−iωτ

)
〉, (B.26)

which we used in Section 5.3.1.
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Proof: Since a|0〉 = 0, we have
(
a± 2g

ω

)
|0〉 = ±2g

ω
|0〉. (B.27)

This implies that |0〉 is an eigenstate of the shifted annihilation operator (a± 2g/ω). An
eigenstate of the annihilation operator is called a coherent state and its eigenvalue is the
displacement of the coherent state. Thus, |0〉 is a coherent state with displacement ±2g/ω
w.r.t. the operator (a± 2g/ω). The time evolution of a coherent state |α〉 with eigenvalue
α of the annihilation operator a is given by

e−iτωa
†a|α〉 = |αe−iωτ 〉, (B.28)

that is, the eigenvalue of |αe−iωτ 〉 w.r.t. a is given by αe−iωτ . We are interested in the
time evolution of |0〉:

e−iτ(ωa
†a±2g(a†+a))|0〉 = eiτ

4g2

ω e
−iτω

(
a†±2g

ω

)(
a±2g

ω

)

|0〉. (B.29)

We know that the eigenvalue of the evolved state has to be ±e−iωτ2g/ω, and therefore

(
a± 2g

ω

)
e
−iτω

(
a†±2g

ω

)(
a±2g

ω

)

|0〉 = ±2g

ω
e−iωτe

−iτω
(
a†±2g

ω

)(
a±2g

ω

)

|0〉. (B.30)

We use Eq. (B.30) to infer the displacement of exp(−iτω(a†± 2g/ω)(a± 2g/ω))|0〉 w.r.t.
the annihilation operator a:

ae
−iτω

(
a†±2g

ω

)(
a±2g

ω

)

|0〉 = ±2g

ω
(e−iωτ − 1)e

−iτω
(
a†±2g

ω

)(
a±2g

ω

)

|0〉. (B.31)

Thus, the displacement is given by ∓2g (1− e−iωτ ) /ω and we write

e
−iτω

(
a†±2g

ω

)(
a±2g

ω

)

|0〉 = |∓2g
ω

(
1− e−iωτ

)
〉, (B.32)

which is equivalent to

e−iτ(ωa
†a±2g(a†+a))|0〉 = eiτ

4g2

ω |∓2g
ω

(
1− e−iωτ

)
〉, (B.33)

what we wanted to show.

B.5 Perturbation theory during the annealing process

In this section, we present the calculation of the perturbation theory up to third order
used to generate the plot shown in Fig. (5.29) in Section 5.3.4 for the case J = 0.94,
h1 = 0.99 = J + 0.05 = J + ε1, h2 = −1 = −J − 0.06 = −(J + ε2).

First region (A(s) > JB(s) > εiB(s)): The unperturbed Hamiltonian is −A(s)Hinit,
and the perturbation is given by HJ = −JB(s)(σz1 − σz2 + σz1σ

z
2). The eigenstates and

eigenenergies of the unperturbed Hamiltonian are given by

|v0〉 =
1

2
(|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉) , E

(0)
0 = −∆(s) (B.34)
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|v1〉 =
1√
2
(|↑↑〉 − |↓↓〉) , E

(0)
1 = 0 (B.35)

|v2〉 =
1√
2
(|↑↓〉 − |↓↑〉) , E

(0)
2 = 0 (B.36)

|v3〉 =
1

2
(−|↑↑〉+ |↑↓〉+ |↓↑〉 − |↓↓〉) , E

(0)
3 = ∆(s). (B.37)

Since the eigenenergy 0 is degenerate, the perturbation Hamiltonian HJ needs to be
diagonalized in the subspace spanned by |v1〉 and |v2〉. We find that this is already the
case and the first order corrections for these states are±JB(s). The first order (〈vi|HJ |vi〉)
energy corrections for the other two states are zero. The second order correction terms
to the energy are computed by

E
(2)
i =

∑

j:E
(0)
j 6=E(0)

i

|〈vj|HJ |vi〉|2

E
(0)
i − E(0)

j

, (B.38)

and the third order energy corrections are computed by

E
(3)
i =

∑

j:E
(0)
j 6=E(0)

i

∑

k:E
(0)
k

6=E(0)
i

〈vi|HJ |vk〉〈vk|HJ |vj〉〈vj|HJ |vi〉(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

) − 〈vi|HJ |vi〉
∑

j:E
(0)
j 6=E(0)

i

|〈vj|HJ |vi〉|2(
E

(0)
i − E(0)

j

)2 .

(B.39)

The matrix of the Hamiltonian HJ in the basis of the |vi〉 is given by

HJ =




0 0 JB(s) −
√
2JB(s)

0 −JB(s) 0 0

JB(s) 0 JB(s) −
√
2JB(s)

−
√
2JB(s) 0 −

√
2JB(s) 0


 . (B.40)

We obtain for the corrected energies in the beginning of the annealing process

E0 = −∆(s)− 5(JB(s))2

2∆(s)
+

4(JB(s))3

∆(s)2
, (B.41)

E1 = −JB(s), (B.42)

E2 = JB(s)− 8(JB(s))3

∆(s)2
, (B.43)

E3 = ∆(s) +
5(JB(s))2

2∆(s)
+

4(JB(s))3

∆(s)2
. (B.44)

Second region (JB(s) > A(s) > εiB(s)): The unperturbed Hamiltonian is HJ , and the
perturbations are −A(s)Hinit and Hε = −B(s)(ε1σ

z
1 − ε2σz2), where A(s) > εiB(s). The

eigenstates and eigenenergies of the unperturbed Hamiltonian are given by

|v0〉 =
1

2

(
|↑↑〉+

√
2|↑↓〉+ |↓↓〉

)
, E

(0)
0 = −JB(s) (B.45)

|v1〉 =
1√
2
(|↑↑〉 − |↓↓〉) , E

(0)
1 = −JB(s) (B.46)
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|v2〉 =
1

2

(
−|↑↑〉+

√
2|↑↓〉 − |↓↓〉

)
, E

(0)
2 = −JB(s) (B.47)

|v3〉 = |↓↑〉, E
(0)
3 = 3JB(s). (B.48)

For the three-fold degenerate eigenspace, we used the eigenstates already computed in
Section 5.3.4 to obtain the states in which the perturbation Hamiltonian −A(s)Hinit is
diagonal in this subspace. The matrix of the Hamiltonian −A(s)Hinit in the basis of the
|vi〉 is given by

−A(s)Hinit =




−∆(s)/
√
2 0 0 −∆(s)/2

0 0 0 0

0 0 ∆(s)/
√
2 ∆(s)/2

−∆(s)/2 0 ∆(s)/2 0


 , (B.49)

and the matrix of the Hamiltonian Hε in the basis of the |vi〉 is given by

Hε = B(s)




−(ε1 + ε2)/2 −(ε1 − ε2)/
√
2 −(ε1 + ε2)/2 0

−(ε1 − ε2)/
√
2 0 (ε1 − ε2)/

√
2 0

−(ε1 + ε2)/2 (ε1 − ε2)/
√
2 −(ε1 + ε2)/2 0

0 0 0 (ε1 + ε2)


 . (B.50)

Using Eqs. (B.38) and (B.39) where we replace HJ by −A(s)Hinit or Hε and use the
matrix elements from Eq. (B.49) and Eq. (B.50), we obtain for the corrected energies in
this region

E0 = −JB(s)− ∆(s)√
2
− ∆(s)2

16JB(s)
+

∆(s)3

64
√
2(JB(s))2

− B(s) (ε1 + ε2)

2
, (B.51)

E1 = −JB(s), (B.52)

E2 = −JB(s) +
∆(s)√

2
− ∆(s)2

16JB(s)
− ∆(s)3

64
√
2(JB(s))2

− B(s) (ε1 + ε2)

2
, (B.53)

E3 = 3JB(s) +
∆(s)2

8JB(s)
+B(s) (ε1 + ε2) . (B.54)

Third region (JB(s) > εiB(s) > A(s)): The Hamiltonian is given by−B(s)HP = HJ+Hε,
and the perturbation is A(s)Hinit. The eigenstates and eigenenergies of the unperturbed
Hamiltonian are given by

|v0〉 = |↑↓〉, E
(0)
0 = −(J + ε1 + ε2)B(s) (B.55)

|v1〉 = |↓↓〉, E
(0)
1 = −(J − ε1 + ε2)B(s) (B.56)

|v2〉 = |↑↑〉, E
(0)
2 = −(J + ε1 − ε2)B(s) (B.57)

|v3〉 = |↓↑〉, E
(0)
3 = (3J + ε1 + ε2)B(s). (B.58)

The matrix of the Hamiltonian −A(s)Hinit in the basis of the |vi〉 is given by

−A(s)Hinit = −
∆

2




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 , (B.59)
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and we obtain for the corrected energies

E0 = −(J + ε1 + ε2)B(s)− ∆(s)2

8ε1B(s)
− ∆(s)2

8ε2B(s)
, (B.60)

E1 = −(J − ε1 + ε2)B(s) +
∆(s)2

8ε1B(s)
− ∆(s)2

8(2J + ε2)B(s)
, (B.61)

E2 = −(J + ε1 − ε2)B(s) +
∆(s)2

8ε2B(s)
− ∆(s)2

8(2J + ε1)B(s)
, (B.62)

E3 = (3J + ε1 + ε2)B(s) +
∆(s)2

8(2J + ε2)B(s)
+

∆(s)2

8(2J + ε1)B(s)
. (B.63)
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