000886051 001__ 886051
000886051 005__ 20210130010600.0
000886051 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.104604
000886051 0247_ $$2ISSN$$a2475-9953
000886051 0247_ $$2ISSN$$a2476-0455
000886051 0247_ $$2Handle$$a2128/26030
000886051 0247_ $$2WOS$$aWOS:000582800500001
000886051 037__ $$aFZJ-2020-04238
000886051 082__ $$a530
000886051 1001_ $$00000-0002-8179-9605$$aZurhelle, A. F.$$b0$$eCorresponding author
000886051 245__ $$aDynamics of the spatial separation of electrons and mobile oxygen vacancies in oxide heterostructures
000886051 260__ $$aCollege Park, MD$$bAPS$$c2020
000886051 3367_ $$2DRIVER$$aarticle
000886051 3367_ $$2DataCite$$aOutput Types/Journal article
000886051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604396511_754
000886051 3367_ $$2BibTeX$$aARTICLE
000886051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886051 3367_ $$00$$2EndNote$$aJournal Article
000886051 520__ $$aIn the search for an oxide-based 2D electron system with a large concentration of highly mobile electrons, a promising strategy is to introduce electrons through donor doping while spatially separating electrons and donors to prevent scattering. In SrTiO3, this can be achieved by tailoring the oxygen vacancy profile through reduction, e.g., by creating an interface with an oxygen scavenging layer. Through reduction, oxygen atoms are removed close to the interface, leaving behind oxygen vacancies in the SrTiO3 lattice and mobile electrons in the SrTiO3 conduction band. The commonly assumed picture is that the oxygen vacancies then remain confined close to the interface while the electrons leak a few nanometers into the bulk, resulting in an electron-defect separation and a highly mobile, oxide-based 2D electron system. So far it has remained unclear how the confinement and electron-defect separation develop over time. Here, we present transient finite element simulations that consider three driving forces acting on the oxygen vacancy distribution: diffusion due to the concentration gradient, drift due to the intrinsic electric field, and an oxygen vacancy trapping energy that holds oxygen vacancies at the interface. Our simulations show that at room temperature, three distinct regions are formed in SrTiO3 within days: (1) Oxygen vacancies are partially held at the interface due to the oxygen vacancy trapping energy. (2) The accompanying positive space charge causes an oxygen vacancy depletion layer with large electron concentration and high mobility just below the interface. This electron-defect separation, indeed, leads to a highly conductive region. (3) While we are able to describe measured conductivity data with an oxygen vacancy trapping energy of −0.2 eV, this value does not prevent oxygen vacancy diffusion into the bulk: A diffusion front progresses into the bulk and leads to significant conductivity arising over the first micrometer within a couple of months. An enhanced oxygen vacancy trapping energy of −0.5 eV or below would suppress this loss of confinement, leading to a static and pronounced electron-defect separation. Consequently, our results highlight the importance of oxygen vacancy redistribution and suggest the trapping energy of oxygen vacancies at the interface as an important design parameter for oxygen-vacancy-based 2D electron systems.
000886051 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000886051 588__ $$aDataset connected to CrossRef
000886051 7001_ $$00000-0003-0048-7595$$aChristensen, D. V.$$b1
000886051 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b2
000886051 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b3
000886051 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.104604$$gVol. 4, no. 10, p. 104604$$n10$$p104604$$tPhysical review materials$$v4$$x2475-9953$$y2020
000886051 8564_ $$uhttps://juser.fz-juelich.de/record/886051/files/PhysRevMaterials.4.104604.pdf$$yOpenAccess
000886051 8564_ $$uhttps://juser.fz-juelich.de/record/886051/files/PhysRevMaterials.4.104604.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000886051 909CO $$ooai:juser.fz-juelich.de:886051$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000886051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b2$$kFZJ
000886051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b3$$kFZJ
000886051 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000886051 9141_ $$y2020
000886051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000886051 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000886051 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000886051 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000886051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000886051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000886051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000886051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000886051 920__ $$lyes
000886051 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000886051 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000886051 980__ $$ajournal
000886051 980__ $$aVDB
000886051 980__ $$aUNRESTRICTED
000886051 980__ $$aI:(DE-Juel1)PGI-7-20110106
000886051 980__ $$aI:(DE-82)080009_20140620
000886051 9801_ $$aFullTexts