000886066 001__ 886066
000886066 005__ 20210113100822.0
000886066 0247_ $$2doi$$a10.3390/pr8070780
000886066 0247_ $$2Handle$$a2128/26034
000886066 0247_ $$2altmetric$$aaltmetric:86864014
000886066 0247_ $$2WOS$$aWOS:000557505800001
000886066 037__ $$aFZJ-2020-04253
000886066 082__ $$a570
000886066 1001_ $$00000-0002-4160-7760$$aBeck, Jürgen$$b0
000886066 245__ $$aCompartment Model of Mixing in a Bubble Trap and Its Impact on Chromatographic Separations
000886066 260__ $$aBasel$$bMDPI$$c2020
000886066 3367_ $$2DRIVER$$aarticle
000886066 3367_ $$2DataCite$$aOutput Types/Journal article
000886066 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610473128_19940
000886066 3367_ $$2BibTeX$$aARTICLE
000886066 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886066 3367_ $$00$$2EndNote$$aJournal Article
000886066 520__ $$aChromatography equipment includes hold-up volumes that are external to the packed bed and usually not considered in the development of chromatography models. These volumes can substantially contribute to band-broadening in the system and deteriorate the predicted performance. We selected a bubble trap of a pilot scale chromatography system as an example for a hold-up volume with a non-standard mixing behavior. In a worst-case scenario, the bubble trap is not properly flushed before elution, thus causing the significant band-broadening of the elution peak. We showed that the mixing of buffers with different densities in the bubble trap device can be accurately modeled using a simple compartment model. The model was calibrated at a wide range of flow rates and salt concentrations. The simulations were performed using the open-source software CADET, and all scripts and data are published with this manuscript. The results illustrate the importance of including external holdup volumes in chromatography modeling. The band-broadening effect of tubing, pumps, valves, detectors, frits, or any other zones with non-standard mixing behavior can be considered in very similar way
000886066 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000886066 588__ $$aDataset connected to CrossRef
000886066 7001_ $$0P:(DE-Juel1)165915$$aHeymann, William$$b1
000886066 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2
000886066 7001_ $$00000-0001-5654-5032$$aHahn, Rainer$$b3$$eCorresponding author
000886066 773__ $$0PERI:(DE-600)2720994-5$$a10.3390/pr8070780$$gVol. 8, no. 7, p. 780 -$$n7$$p780 -$$tProcesses$$v8$$x2227-9717$$y2020
000886066 8564_ $$uhttps://juser.fz-juelich.de/record/886066/files/processes-08-00780-v2.pdf$$yOpenAccess
000886066 8564_ $$uhttps://juser.fz-juelich.de/record/886066/files/processes-08-00780-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000886066 909CO $$ooai:juser.fz-juelich.de:886066$$popen_access$$popenaire$$pVDB$$pdriver$$pdnbdelivery
000886066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165915$$aForschungszentrum Jülich$$b1$$kFZJ
000886066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000886066 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000886066 9141_ $$y2020
000886066 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-06
000886066 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000886066 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROCESSES : 2018$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886066 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000886066 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000886066 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000886066 980__ $$ajournal
000886066 980__ $$aVDB
000886066 980__ $$aI:(DE-Juel1)IBG-1-20101118
000886066 980__ $$aUNRESTRICTED
000886066 9801_ $$aFullTexts