000886067 001__ 886067
000886067 005__ 20210113100823.0
000886067 0247_ $$2doi$$a10.1016/j.compchemeng.2020.107012
000886067 0247_ $$2ISSN$$a0098-1354
000886067 0247_ $$2ISSN$$a1873-4375
000886067 0247_ $$2Handle$$a2128/26072
000886067 0247_ $$2WOS$$aWOS:000570247700004
000886067 037__ $$aFZJ-2020-04254
000886067 082__ $$a660
000886067 1001_ $$0P:(DE-HGF)0$$aMeyer, Kristian$$b0$$eCorresponding author
000886067 245__ $$aChromaTech: A discontinuous Galerkin spectral element simulator for preparative liquid chromatography
000886067 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000886067 3367_ $$2DRIVER$$aarticle
000886067 3367_ $$2DataCite$$aOutput Types/Journal article
000886067 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610473250_22697
000886067 3367_ $$2BibTeX$$aARTICLE
000886067 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886067 3367_ $$00$$2EndNote$$aJournal Article
000886067 520__ $$aChromaTech is a simulator for preparative liquid chromatography processes with mass transport described by the pore and surface diffusion general rate model. A discontinuous Galerkin spectral element method is used for spatial discretization with exponential decay of approximation errors within elements. The code is validated by numerically reproducing a high-precision reference obtained with CADET-semi-analytic. The performance of ChromaTech is tested by comparing against CADET, a dedicated code based on a weighted essentially non-oscillatory finite volume method with second (low) order spatial accuracy. Reassuringly, ChromaTech provides exactly the same chromatograms as CADET for multicomponent protein purification cases with linear and non-linear adsorption dynamics. However, the numerical results show, that ChromaTech has superior efficiency in terms of computational cost and discrete problem size without compromising stability. The spatial discretization is the major difference between the two codes for solution of the pore and surface diffusion general rate model. Thus, it demonstrates, that spectral methods are not just competitive with second (low) order accurate methods often used by default, but simply a superior approach for spatial discretization of liquid chromatography flow problems in terms of computational efficiency.
000886067 536__ $$0G:(DE-HGF)POF3-583$$a583 - Innovative Synergisms (POF3-583)$$cPOF3-583$$fPOF III$$x0
000886067 588__ $$aDataset connected to CrossRef
000886067 7001_ $$0P:(DE-Juel1)139548$$aLeweke, Samuel$$b1$$ufzj
000886067 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2$$ufzj
000886067 7001_ $$0P:(DE-HGF)0$$aHuusom, Jakob K.$$b3
000886067 7001_ $$0P:(DE-HGF)0$$aAbildskov, Jens$$b4
000886067 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2020.107012$$gVol. 141, p. 107012 -$$p107012 -$$tComputers & chemical engineering$$v141$$x0098-1354$$y2020
000886067 8564_ $$uhttps://juser.fz-juelich.de/record/886067/files/Meyer%20et%20al.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000886067 8564_ $$uhttps://juser.fz-juelich.de/record/886067/files/Meyer%20et%20al.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000886067 909CO $$ooai:juser.fz-juelich.de:886067$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000886067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139548$$aForschungszentrum Jülich$$b1$$kFZJ
000886067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000886067 9131_ $$0G:(DE-HGF)POF3-583$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vInnovative Synergisms$$x0
000886067 9141_ $$y2020
000886067 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2018$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886067 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000886067 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000886067 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000886067 980__ $$ajournal
000886067 980__ $$aVDB
000886067 980__ $$aI:(DE-Juel1)IBG-1-20101118
000886067 980__ $$aUNRESTRICTED
000886067 9801_ $$aFullTexts