001     886067
005     20210113100823.0
024 7 _ |a 10.1016/j.compchemeng.2020.107012
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/26072
|2 Handle
024 7 _ |a WOS:000570247700004
|2 WOS
037 _ _ |a FZJ-2020-04254
082 _ _ |a 660
100 1 _ |a Meyer, Kristian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ChromaTech: A discontinuous Galerkin spectral element simulator for preparative liquid chromatography
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610473250_22697
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ChromaTech is a simulator for preparative liquid chromatography processes with mass transport described by the pore and surface diffusion general rate model. A discontinuous Galerkin spectral element method is used for spatial discretization with exponential decay of approximation errors within elements. The code is validated by numerically reproducing a high-precision reference obtained with CADET-semi-analytic. The performance of ChromaTech is tested by comparing against CADET, a dedicated code based on a weighted essentially non-oscillatory finite volume method with second (low) order spatial accuracy. Reassuringly, ChromaTech provides exactly the same chromatograms as CADET for multicomponent protein purification cases with linear and non-linear adsorption dynamics. However, the numerical results show, that ChromaTech has superior efficiency in terms of computational cost and discrete problem size without compromising stability. The spatial discretization is the major difference between the two codes for solution of the pore and surface diffusion general rate model. Thus, it demonstrates, that spectral methods are not just competitive with second (low) order accurate methods often used by default, but simply a superior approach for spatial discretization of liquid chromatography flow problems in terms of computational efficiency.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Leweke, Samuel
|0 P:(DE-Juel1)139548
|b 1
|u fzj
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 2
|u fzj
700 1 _ |a Huusom, Jakob K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Abildskov, Jens
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.compchemeng.2020.107012
|g Vol. 141, p. 107012 -
|0 PERI:(DE-600)1499971-7
|p 107012 -
|t Computers & chemical engineering
|v 141
|y 2020
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/886067/files/Meyer%20et%20al.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/886067/files/Meyer%20et%20al.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:886067
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)139548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Innovative Synergisms
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21