Hauptseite > Publikationsdatenbank > Single-nucleotide variants in human CD81 influence hepatitis C virus infection of hepatoma cells > print |
001 | 886069 | ||
005 | 20210423193421.0 | ||
024 | 7 | _ | |a 10.1007/s00430-020-00675-1 |2 doi |
024 | 7 | _ | |a 0044-3077 |2 ISSN |
024 | 7 | _ | |a 0300-8584 |2 ISSN |
024 | 7 | _ | |a 0340-1782 |2 ISSN |
024 | 7 | _ | |a 1432-1831 |2 ISSN |
024 | 7 | _ | |a 2199-2983 |2 ISSN |
024 | 7 | _ | |a 2128/26035 |2 Handle |
024 | 7 | _ | |a pmid:32322956 |2 pmid |
024 | 7 | _ | |a WOS:000528138600001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04255 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Alberione, María Pía |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Single-nucleotide variants in human CD81 influence hepatitis C virus infection of hepatoma cells |
260 | _ | _ | |a Heidelberg |c 2020 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1619161359_2073 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a An estimated number of 71 million people are living with chronic hepatitis C virus (HCV) infection worldwide and 400,000 annual deaths are related to the infection. HCV entry into the hepatocytes is complex and involves several host factors. The tetraspanin human CD81 (hCD81) is one of the four essential entry factors and is composed of one large extracellular loop, one small extracellular loop, four transmembrane domains, one intracellular loop and two intracellular tails. The large extracellular loop interacts with the E2 glycoprotein of HCV. Regions outside the large extracellular loop (backbone) of hCD81 have a critical role in post-binding entry steps and determine susceptibility of hepatocytes to HCV. Here, we investigated the effect of five non-synonymous single-nucleotide variants in the backbone of hCD81 on HCV susceptibility. We generated cell lines that stably express the hCD81 variants and infected the cells using HCV pseudoparticles and cell culture-derived HCV. Our results show that all the tested hCD81 variants support HCV pseudoparticle entry with similar efficiency as wild-type hCD81. In contrast, variants A54V, V211M and M220I are less supportive to cell culture-derived HCV infection. This altered susceptibility is HCV genotype dependent and specifically affected the cell entry step. Our findings identify three hCD81 genetic variants that are impaired in their function as HCV host factors for specific viral genotypes. This study provides additional evidence that genetic host variation contributes to inter-individual differences in HCV infection and outcome. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
536 | _ | _ | |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20190501) |0 G:(DE-Juel1)jics40_20190501 |c jics40_20190501 |f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS |x 1 |
536 | _ | _ | |a Multiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20191101) |0 G:(DE-Juel1)jics42_20191101 |c jics42_20191101 |f Multiscale simulations of voltage-gated sodium channel complexes and clusters |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Moeller, Rebecca |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kirui, Jared |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Ginkel, Corinne |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Doepke, Mandy |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ströh, Luisa J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Machtens, Jan-Philipp |0 P:(DE-Juel1)156429 |b 6 |u fzj |
700 | 1 | _ | |a Pietschmann, Thomas |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Gerold, Gisa |0 0000-0002-1326-5038 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1007/s00430-020-00675-1 |g Vol. 209, no. 4, p. 499 - 514 |0 PERI:(DE-600)1462140-x |n 4 |p 499 - 514 |t Medical microbiology and immunology |v 209 |y 2020 |x 1432-1831 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/886069/files/Alberione2020_Article_Single-nucleotideVariantsInHum.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/886069/files/Alberione2020_Article_Single-nucleotideVariantsInHum.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:886069 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156429 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Functional Macromolecules and Complexes |x 0 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED MICROBIOL IMMUN : 2018 |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-24 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2020-01-24 |w ger |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-1-20200312 |k IBI-1 |l Molekular- und Zellphysiologie |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|