000886071 001__ 886071
000886071 005__ 20240313103126.0
000886071 0247_ $$2doi$$a10.1073/pnas.2000222117
000886071 0247_ $$2ISSN$$a0027-8424
000886071 0247_ $$2ISSN$$a1091-6490
000886071 0247_ $$2Handle$$a2128/26360
000886071 0247_ $$2altmetric$$aaltmetric:88063660
000886071 0247_ $$2pmid$$apmid:32788365
000886071 0247_ $$2WOS$$aWOS:000572347100008
000886071 037__ $$aFZJ-2020-04257
000886071 082__ $$a500
000886071 1001_ $$0P:(DE-HGF)0$$aFitz, Hartmut$$b0$$eCorresponding author
000886071 245__ $$aNeuronal spike-rate adaptation supports working memory in language processing
000886071 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2020
000886071 3367_ $$2DRIVER$$aarticle
000886071 3367_ $$2DataCite$$aOutput Types/Journal article
000886071 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607260513_14040
000886071 3367_ $$2BibTeX$$aARTICLE
000886071 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886071 3367_ $$00$$2EndNote$$aJournal Article
000886071 520__ $$aLanguage processing involves the ability to store and integrate pieces of information in working memory over short periods of time. According to the dominant view, information is maintained through sustained, elevated neural activity. Other work has argued that short-term synaptic facilitation can serve as a substrate of memory. Here we propose an account where memory is supported by intrinsic plasticity that downregulates neuronal firing rates. Single neuron responses are dependent on experience, and we show through simulations that these adaptive changes in excitability provide memory on timescales ranging from milliseconds to seconds. On this account, spiking activity writes information into coupled dynamic variables that control adaptation and move at slower timescales than the membrane potential. From these variables, information is continuously read back into the active membrane state for processing. This neuronal memory mechanism does not rely on persistent activity, excitatory feedback, or synaptic plasticity for storage. Instead, information is maintained in adaptive conductances that reduce firing rates and can be accessed directly without cued retrieval. Memory span is systematically related to both the time constant of adaptation and baseline levels of neuronal excitability. Interference effects within memory arise when adaptation is long lasting. We demonstrate that this mechanism is sensitive to context and serial order which makes it suitable for temporal integration in sequence processing within the language domain. We also show that it enables the binding of linguistic features over time within dynamic memory registers. This work provides a step toward a computational neurobiology of language.
000886071 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000886071 588__ $$aDataset connected to CrossRef
000886071 7001_ $$0P:(DE-HGF)0$$aUhlmann, Marvin$$b1
000886071 7001_ $$00000-0003-1861-2956$$avan den Broek, Dick$$b2
000886071 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b3
000886071 7001_ $$00000-0001-7280-7549$$aHagoort, Peter$$b4
000886071 7001_ $$0P:(DE-HGF)0$$aPetersson, Karl Magnus$$b5
000886071 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2000222117$$gVol. 117, no. 34, p. 20881 - 20889$$n34$$p20881 - 20889$$tProceedings of the National Academy of Sciences of the United States of America$$v117$$x0027-8424$$y2020
000886071 8564_ $$uhttps://juser.fz-juelich.de/record/886071/files/20881.full.pdf$$yOpenAccess
000886071 909CO $$ooai:juser.fz-juelich.de:886071$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000886071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165640$$aForschungszentrum Jülich$$b3$$kFZJ
000886071 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000886071 9141_ $$y2020
000886071 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000886071 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2018$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886071 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2018$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-16$$wger
000886071 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000886071 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000886071 920__ $$lyes
000886071 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000886071 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000886071 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000886071 9801_ $$aFullTexts
000886071 980__ $$ajournal
000886071 980__ $$aVDB
000886071 980__ $$aUNRESTRICTED
000886071 980__ $$aI:(DE-Juel1)INM-6-20090406
000886071 980__ $$aI:(DE-Juel1)IAS-6-20130828
000886071 980__ $$aI:(DE-Juel1)INM-10-20170113
000886071 981__ $$aI:(DE-Juel1)IAS-6-20130828