000886102 001__ 886102
000886102 005__ 20210130010605.0
000886102 0247_ $$2doi$$a10.1063/5.0012652
000886102 0247_ $$2ISSN$$a0034-6748
000886102 0247_ $$2ISSN$$a1089-7623
000886102 0247_ $$2ISSN$$a1527-2400
000886102 0247_ $$2Handle$$a2128/26148
000886102 0247_ $$2altmetric$$aaltmetric:93821741
000886102 0247_ $$2pmid$$apmid:33261451
000886102 0247_ $$2WOS$$aWOS:000589669100003
000886102 037__ $$aFZJ-2020-04270
000886102 041__ $$aEnglish
000886102 082__ $$a620
000886102 1001_ $$00000-0002-1656-1852$$aWidmann, Tobias$$b0
000886102 245__ $$a3D printed spherical environmental chamber for neutron reflectometry and grazing-incidence small-angle neutron scattering experiments
000886102 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2020
000886102 3367_ $$2DRIVER$$aarticle
000886102 3367_ $$2DataCite$$aOutput Types/Journal article
000886102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605288982_16531
000886102 3367_ $$2BibTeX$$aARTICLE
000886102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886102 3367_ $$00$$2EndNote$$aJournal Article
000886102 520__ $$aIn neutron scattering on soft matter, an important concern is the control and stability of environmental conditions surrounding the sample. Complex sample environment setups are often expensive to fabricate or simply not achievable by conventional workshop manufacturing. We make use of state-of-the-art 3D metal-printing technology to realize a sample environment for large sample sizes, optimized for investigations on thin film samples with neutron reflectometry (NR) and grazing-incidence small-angle neutron scattering (GISANS). With the flexibility and freedom of design given by 3D metal-printing, a spherical chamber with fluidic channels inside its walls is printed from an AlSi10Mg powder via selective laser melting (SLM). The thin channels ensure a homogeneous heating of the sample environment from all directions and allow for quick temperature switches in well-equilibrated atmospheres. In order to optimize the channel layout, flow simulations were carried out and verified in temperature switching tests. The spherical, edgeless design aids the prevention of condensation inside the chamber in case of high humidity conditions. The large volume of the sample chamber allows for high flexibility in sample size and geometry. While a small-angle neutron scattering (SANS) measurement through the chamber walls reveals a strong isotropic scattering signal resulting from the evenly orientated granular structure introduced by SLM, a second SANS measurement through the windows shows no additional background originating from the chamber. Exemplary GISANS and NR measurements in time-of-flight mode are shown to prove that the chamber provides a stable, background free sample environment for the investigation of thin films.
000886102 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000886102 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000886102 588__ $$aDataset connected to CrossRef
000886102 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000886102 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000886102 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000886102 693__ $$0EXP:(DE-MLZ)REFSANS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)REFSANS-20140101$$6EXP:(DE-MLZ)NL2b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eREFSANS: Horizontal TOF Reflectometer with GISANS option$$fNL2b$$x1
000886102 7001_ $$00000-0002-9669-2130$$aKreuzer, Lucas P.$$b1
000886102 7001_ $$0P:(DE-Juel1)166565$$aMangiapia, Gaetano$$b2
000886102 7001_ $$00000-0002-3643-5095$$aHaese, Martin$$b3
000886102 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b4
000886102 7001_ $$00000-0002-9566-6088$$aMüller-Buschbaum, Peter$$b5$$eCorresponding author
000886102 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/5.0012652$$gVol. 91, no. 11, p. 113903 -$$n11$$p113903 -$$tReview of scientific instruments$$v91$$x1089-7623$$y2020
000886102 8564_ $$uhttps://juser.fz-juelich.de/record/886102/files/168.pdf$$yPublished on 2020-11-04. Available in OpenAccess from 2021-11-04.
000886102 8564_ $$uhttps://juser.fz-juelich.de/record/886102/files/168.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-11-04. Available in OpenAccess from 2021-11-04.
000886102 909CO $$ooai:juser.fz-juelich.de:886102$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000886102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b4$$kFZJ
000886102 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000886102 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000886102 9141_ $$y2020
000886102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000886102 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2018$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-15$$wger
000886102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-15
000886102 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-15$$wger
000886102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000886102 920__ $$lyes
000886102 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000886102 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000886102 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000886102 980__ $$ajournal
000886102 980__ $$aVDB
000886102 980__ $$aUNRESTRICTED
000886102 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000886102 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000886102 980__ $$aI:(DE-588b)4597118-3
000886102 9801_ $$aFullTexts