000886110 001__ 886110
000886110 005__ 20230426083223.0
000886110 0247_ $$2doi$$a10.1103/PhysRevB.102.064432
000886110 0247_ $$2ISSN$$a0163-1829
000886110 0247_ $$2ISSN$$a0556-2805
000886110 0247_ $$2ISSN$$a1050-2947
000886110 0247_ $$2ISSN$$a1094-1622
000886110 0247_ $$2ISSN$$a1095-3795
000886110 0247_ $$2ISSN$$a1098-0121
000886110 0247_ $$2ISSN$$a1538-4446
000886110 0247_ $$2ISSN$$a1538-4489
000886110 0247_ $$2ISSN$$a1550-235X
000886110 0247_ $$2ISSN$$a2469-9950
000886110 0247_ $$2ISSN$$a2469-9969
000886110 0247_ $$2ISSN$$a2469-9977
000886110 0247_ $$2Handle$$a2128/26077
000886110 0247_ $$2altmetric$$aaltmetric:89217972
000886110 0247_ $$2WOS$$aWOS:000564041600002
000886110 037__ $$aFZJ-2020-04273
000886110 041__ $$aEnglish
000886110 082__ $$a530
000886110 1001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b0$$eCorresponding author$$ufzj
000886110 245__ $$aRobust nature of the chiral spin helix in Cr Nb 3 S 6 nanostructures studied by off-axis electron holography
000886110 260__ $$aWoodbury, NY$$bInst.$$c2020
000886110 3367_ $$2DRIVER$$aarticle
000886110 3367_ $$2DataCite$$aOutput Types/Journal article
000886110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605879494_1333
000886110 3367_ $$2BibTeX$$aARTICLE
000886110 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886110 3367_ $$00$$2EndNote$$aJournal Article
000886110 520__ $$aMagnetic soliton crystals with layered structures that host periodic chiral helimagnetic ordering are promising candidates for spintronic nanodevices. Among them, helimagnetic CrNb3S6 is unique owing to its crystallographic chirality and monoaxial Dzyaloshinskii-Moriya interaction. It is crucial to explore its magnetic configurations and properties with respect to the temperature and thickness, especially in reduced dimensions. Here, the chiral helimagnetic ground state in CrNb3S6 nanostructures is investigated using off-axis electron holography in the transmission electron microscope. The period of the helical state is found to be independent of both temperature and specimen thickness, while the temperature dependence of the saturation magnetization is shown to follow a classical Heisenberg spin model. Monte Carlo simulations based on a discrete classical Heisenberg model reproduce the experimental observations closely, confirming the applicability of a three-dimensional Heisenberg model even in a confined specimen geometry.
000886110 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000886110 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
000886110 536__ $$0G:(GEPRIS)392476493$$aDFG project 392476493 - Atomare Auflösung der Spinkonfiguration an Grenzflächen funktionaler Materialien mittels Transmissionselektronenmikroskopie (392476493)$$c392476493$$x2
000886110 542__ $$2Crossref$$i2020-08-31$$uhttps://link.aps.org/licenses/aps-default-license
000886110 588__ $$aDataset connected to CrossRef
000886110 7001_ $$0P:(DE-Juel1)174154$$aWang, Lin$$b1$$eCorresponding author
000886110 7001_ $$00000-0001-6997-3626$$aWang, Weiwei$$b2
000886110 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b3
000886110 7001_ $$0P:(DE-HGF)0$$aTang, Jin$$b4
000886110 7001_ $$0P:(DE-HGF)0$$aWang, Shasha$$b5
000886110 7001_ $$0P:(DE-HGF)0$$aZhu, Chao$$b6
000886110 7001_ $$0P:(DE-Juel1)157760$$aCaron, Jan$$b7
000886110 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b8$$ufzj
000886110 7001_ $$00000-0002-8825-7198$$aLiu, Zheng$$b9
000886110 7001_ $$0P:(DE-HGF)0$$aMandrus, David$$b10
000886110 7001_ $$0P:(DE-HGF)0$$aTian, Mingliang$$b11
000886110 7001_ $$0P:(DE-HGF)0$$aDu, Haifeng$$b12
000886110 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b13
000886110 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.064432$$bAmerican Physical Society (APS)$$d2020-08-31$$n6$$p064432$$tPhysical Review B$$v102$$x2469-9950$$y2020
000886110 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.064432$$gVol. 102, no. 6, p. 064432$$n6$$p064432$$tPhysical review / B$$v102$$x2469-9950$$y2020
000886110 8564_ $$uhttps://juser.fz-juelich.de/record/886110/files/INV_20_NOV_004506.pdf
000886110 8564_ $$uhttps://juser.fz-juelich.de/record/886110/files/D.S_Manuscript.pdf$$yOpenAccess
000886110 8564_ $$uhttps://juser.fz-juelich.de/record/886110/files/PhysRevB.102.064432.pdf$$yOpenAccess
000886110 8564_ $$uhttps://juser.fz-juelich.de/record/886110/files/PhysRevB.102.064432.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000886110 8767_ $$8INV/20/NOV/004506$$92020-11-05$$d2020-11-13$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200159412
000886110 909CO $$ooai:juser.fz-juelich.de:886110$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000886110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176812$$aForschungszentrum Jülich$$b0$$kFZJ
000886110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b3$$kFZJ
000886110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157760$$aForschungszentrum Jülich$$b7$$kFZJ
000886110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b8$$kFZJ
000886110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b13$$kFZJ
000886110 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000886110 9141_ $$y2020
000886110 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000886110 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000886110 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886110 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000886110 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000886110 920__ $$lyes
000886110 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000886110 980__ $$ajournal
000886110 980__ $$aVDB
000886110 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000886110 980__ $$aAPC
000886110 980__ $$aUNRESTRICTED
000886110 9801_ $$aAPC
000886110 9801_ $$aFullTexts
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201603227
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1214143
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09124
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1166767
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-018-0093-3
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.107202
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(82)91006-7
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.52.1394
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.85.112001
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/jmicro/dft007
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.197204
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.057206
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.220412
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.014419
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.017204
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.184423
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.224429
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2406
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2015.09.004
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2818.1995.tb03655.x
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.85.074710
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.41.121
000886110 999C5 $$1V. L. Pokrovsky$$2Crossref$$oV. L. Pokrovsky 1980$$y1980
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.5b02653
000886110 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.054433