| Hauptseite > Publikationsdatenbank > Robust nature of the chiral spin helix in Cr Nb 3 S 6 nanostructures studied by off-axis electron holography > print |
| 001 | 886110 | ||
| 005 | 20230426083223.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.102.064432 |2 doi |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1050-2947 |2 ISSN |
| 024 | 7 | _ | |a 1094-1622 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 1538-4446 |2 ISSN |
| 024 | 7 | _ | |a 1538-4489 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a 2469-9950 |2 ISSN |
| 024 | 7 | _ | |a 2469-9969 |2 ISSN |
| 024 | 7 | _ | |a 2469-9977 |2 ISSN |
| 024 | 7 | _ | |a 2128/26077 |2 Handle |
| 024 | 7 | _ | |a altmetric:89217972 |2 altmetric |
| 024 | 7 | _ | |a WOS:000564041600002 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04273 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Song, Dongsheng |0 P:(DE-Juel1)176812 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Robust nature of the chiral spin helix in Cr Nb 3 S 6 nanostructures studied by off-axis electron holography |
| 260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605879494_1333 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Magnetic soliton crystals with layered structures that host periodic chiral helimagnetic ordering are promising candidates for spintronic nanodevices. Among them, helimagnetic CrNb3S6 is unique owing to its crystallographic chirality and monoaxial Dzyaloshinskii-Moriya interaction. It is crucial to explore its magnetic configurations and properties with respect to the temperature and thickness, especially in reduced dimensions. Here, the chiral helimagnetic ground state in CrNb3S6 nanostructures is investigated using off-axis electron holography in the transmission electron microscope. The period of the helical state is found to be independent of both temperature and specimen thickness, while the temperature dependence of the saturation magnetization is shown to follow a classical Heisenberg spin model. Monte Carlo simulations based on a discrete classical Heisenberg model reproduce the experimental observations closely, confirming the applicability of a three-dimensional Heisenberg model even in a confined specimen geometry. |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |x 0 |f POF III |
| 536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |x 1 |f ERC-2019-SyG |
| 536 | _ | _ | |a DFG project 392476493 - Atomare Auflösung der Spinkonfiguration an Grenzflächen funktionaler Materialien mittels Transmissionselektronenmikroskopie (392476493) |0 G:(GEPRIS)392476493 |c 392476493 |x 2 |
| 542 | _ | _ | |i 2020-08-31 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Wang, Lin |0 P:(DE-Juel1)174154 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Wang, Weiwei |0 0000-0001-6997-3626 |b 2 |
| 700 | 1 | _ | |a Zheng, Fengshan |0 P:(DE-Juel1)165965 |b 3 |
| 700 | 1 | _ | |a Tang, Jin |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Wang, Shasha |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Zhu, Chao |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Caron, Jan |0 P:(DE-Juel1)157760 |b 7 |
| 700 | 1 | _ | |a Kovács, András |0 P:(DE-Juel1)144926 |b 8 |u fzj |
| 700 | 1 | _ | |a Liu, Zheng |0 0000-0002-8825-7198 |b 9 |
| 700 | 1 | _ | |a Mandrus, David |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Tian, Mingliang |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Du, Haifeng |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 13 |
| 773 | 1 | 8 | |a 10.1103/physrevb.102.064432 |b American Physical Society (APS) |d 2020-08-31 |n 6 |p 064432 |3 journal-article |2 Crossref |t Physical Review B |v 102 |y 2020 |x 2469-9950 |
| 773 | _ | _ | |a 10.1103/PhysRevB.102.064432 |g Vol. 102, no. 6, p. 064432 |0 PERI:(DE-600)2844160-6 |n 6 |p 064432 |t Physical review / B |v 102 |y 2020 |x 2469-9950 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/886110/files/INV_20_NOV_004506.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/886110/files/D.S_Manuscript.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/886110/files/PhysRevB.102.064432.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/886110/files/PhysRevB.102.064432.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:886110 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176812 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165965 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)157760 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)144926 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)144121 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-24 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-24 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-24 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1002/adma.201603227 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1126/science.1214143 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nature09124 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1126/science.1166767 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/s41565-018-0093-3 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.108.107202 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/0038-1098(82)91006-7 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1143/JPSJ.52.1394 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.7566/JPSJ.85.112001 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1093/jmicro/dft007 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.111.197204 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.122.057206 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.92.220412 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.89.014419 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.122.017204 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.96.184423 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.99.224429 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nmat2406 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/j.ultramic.2015.09.004 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1111/j.1365-2818.1995.tb03655.x |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.7566/JPSJ.85.074710 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.41.121 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |1 V. L. Pokrovsky |y 1980 |2 Crossref |o V. L. Pokrovsky 1980 |
| 999 | C | 5 | |a 10.1021/acs.nanolett.5b02653 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.101.054433 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|