001 | 886118 | ||
005 | 20250129094322.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpca.0c05060 |2 doi |
024 | 7 | _ | |a 1089-5639 |2 ISSN |
024 | 7 | _ | |a 1520-5215 |2 ISSN |
024 | 7 | _ | |a 2128/26109 |2 Handle |
024 | 7 | _ | |a altmetric:90052186 |2 altmetric |
024 | 7 | _ | |a pmid:32894948 |2 pmid |
024 | 7 | _ | |a WOS:000577149400002 |2 WOS |
037 | _ | _ | |a FZJ-2020-04281 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Jafari, Atefeh |0 P:(DE-Juel1)159450 |b 0 |e Corresponding author |
245 | _ | _ | |a Phonon Spectroscopy in Antimony and Tellurium Oxides |
260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605014667_20701 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a α-Sb2O3 (senarmontite), β-Sb2O3 (valentinite), and α-TeO2 (paratellurite) are compounds with pronounced stereochemically active Sb and Te lone pairs. The vibrational and lattice properties of each have been previously studied but often lead to incomplete or unreliable results due to modes being inactive in infrared or Raman spectroscopy. Here, we present a study of the relationship between bonding and lattice dynamics of these compounds. Mössbauer spectroscopy is used to study the structure of Sb in α-Sb2O3 and β-Sb2O3, whereas the vibrational modes of Sb and Te for each oxide are investigated using nuclear inelastic scattering, and further information on O vibrational modes is obtained using inelastic neutron scattering. Additionally, vibrational frequencies obtained by density functional theory (DFT) calculations are compared with experimental results in order to assess the validity of the utilized functional. Good agreement was found between DFT-calculated and experimental density of phonon states with a 7% scaling factor. The Sb–O–Sb wagging mode of α-Sb2O3 whose frequency was not clear in most previous studies is experimentally observed for the first time at ∼340 cm–1. Softer lattice vibrational modes occur in orthorhombic β-Sb2O3 compared to cubic α-Sb2O3, indicating that the antimony bonds are weakened upon transforming from the molecular α phase to the layer-chained β structure. The resulting vibrational entropy increase of 0.45 ± 0.1 kB/Sb2O3 at 880 K accounts for about half of the α–β transition entropy. The comparison of experimental and theoretical approaches presented here provides a detailed picture of the lattice dynamics in these oxides beyond the zone center and shows that the accuracy of DFT is sufficient for future calculations of similar material structures. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 1 |
536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 2 |
536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 3 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Klobes, Benedikt |0 P:(DE-Juel1)144500 |b 1 |
700 | 1 | _ | |a Sergueev, Ilya |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Moseley, Duncan H. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Manley, Michael E. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dronskowski, Richard |0 0000-0002-1925-9624 |b 5 |
700 | 1 | _ | |a Deringer, Volker L. |0 0000-0001-6873-0278 |b 6 |
700 | 1 | _ | |a Stoffel, Ralf P. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Bessas, Dimitrios |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Chumakov, Aleksandr I. |0 0000-0002-0755-0422 |b 9 |
700 | 1 | _ | |a Rüffer, Rudolf |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Mahmoud, Abdelfattah |0 P:(DE-Juel1)159434 |b 11 |
700 | 1 | _ | |a Bridges, Craig A. |0 0000-0002-3543-463X |b 12 |
700 | 1 | _ | |a Daemen, Luke L. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Cheng, Yongqiang |0 0000-0002-3263-4812 |b 14 |
700 | 1 | _ | |a Ramirez-Cuesta, Anibal J. |0 0000-0003-1231-0068 |b 15 |
700 | 1 | _ | |a Hermann, Raphael P. |0 P:(DE-Juel1)130706 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jpca.0c05060 |g Vol. 124, no. 39, p. 7869 - 7880 |0 PERI:(DE-600)2006031-2 |n 39 |p 7869 - 7880 |t The journal of physical chemistry |v 124 |y 2020 |x 1520-5215 |
856 | 4 | _ | |y Published on 2020-09-07. Available in OpenAccess from 2021-09-07. |u https://juser.fz-juelich.de/record/886118/files/Oxides_ACS.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/886118/files/acs.jpca.0c05060.pdf |
856 | 4 | _ | |y Published on 2020-09-07. Available in OpenAccess from 2021-09-07. |x pdfa |u https://juser.fz-juelich.de/record/886118/files/Oxides_ACS.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |u https://juser.fz-juelich.de/record/886118/files/acs.jpca.0c05060.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:886118 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)130706 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 4 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM A : 2018 |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-27 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|