% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Senk:886165,
author = {Senk, Johanna and Kriener, Birgit and Voges, Nicole and
Schüttler, Lisa and Gramelsberger, Gabriele and Plesser,
Hans Ekkehard and Diesmann, Markus and van Albada, Sacha},
title = {{S}ystematic textual and graphical description of
connectivity},
reportid = {FZJ-2020-04298},
year = {2020},
abstract = {Sustainable research on neuronal network models requires
published models to be understandable, reproducible, and
extendable. Left-out details about mathematical concepts and
assumptions, algorithmic implementations, or
parameterizations adversely affect progress. Such flaws are
unfortunately frequent and one reason is a lack of readily
applicable standards and tools for model description [1].
Here, we review models made available by the Computational
Neuroscience community in databases like ModelDB [2] and
Open Source Brain [3], and investigate the corresponding
connectivity structures and their descriptions in both
manuscript and code. Based on this review, we derive a set
of connectivity concepts in combination with guidelines for
a comprehensive, complete, and concise description of
network connectivity. In particular, we propose a unified
graphical notation for network diagrams to foster an
intuitive understanding of network properties (compare [4]).
This work also aims to guide the implementation of
connection routines in simulation software like NEST [5] and
neuromorphic hardware systems.References1. Nordlie E et al.
(2009) Towards Reproducible Descriptions of Neuronal Network
Models. PLoS Comput Biol. 5(8):e1000456,
10.1371/journal.pcbi.10004562. McDougal R A et al. (2017)
Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J Comput
Neurosci. 42:1-10, 10.1007/s10827-016-0623-73. Gleeson P et
al. (2019) Open Source Brain: A Collaborative Resource for
Visualizing, Analyzing, Simulating and Developing
Standardized Models of Neurons and Circuits. Neuron.
103(3):395-411.e5, 10.1016/j.neuron.2019.05.0194. Le Novère
N et al. (2009) The Systems Biology Graphical Notation. Nat
Biotechnol. 27(8):735-41, 10.1038/nbt.15585. Gewaltig M-O
and Diesmann M (2007). NEST (NEural Simulation Tool).
Scholarpedia. 2(4):1430, 10.4249/scholarpedia.1430},
month = {Sep},
date = {2020-09-29},
organization = {Bernstein Conference 2020, online
(online), 29 Sep 2020 - 1 Oct 2020},
cin = {INM-6 / IAS-6 / INM-10},
cid = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)IAS-6-20130828 /
I:(DE-Juel1)INM-10-20170113},
pnm = {574 - Theory, modelling and simulation (POF3-574) / PhD no
Grant - Doktorand ohne besondere Förderung
(PHD-NO-GRANT-20170405) / Advanced Computing Architectures
$(aca_20190115)$ / HBP SGA1 - Human Brain Project Specific
Grant Agreement 1 (720270) / HBP SGA2 - Human Brain Project
Specific Grant Agreement 2 (785907) / HBP SGA3 - Human Brain
Project Specific Grant Agreement 3 (945539) / DEEP-EST -
DEEP - Extreme Scale Technologies (754304) / DigiBrain - DL:
DigiBrain - From genes to brain function in health and
disease $(248828_20200305)$ / COBRA - COmputing BRAin
signals (COBRA): Biophysical computations of electrical and
magnetic brain signals $(250128_20200305)$ / SPP 2041
347572269 - Integration von Multiskalen-Konnektivität und
Gehirnarchitektur in einem supercomputergestützten Modell
der menschlichen Großhirnrinde (347572269) / Brain-Scale
Simulations $(jinb33_20191101)$ / GRK 2416 - GRK 2416:
MultiSenses-MultiScales: Neue Ansätze zur Aufklärung
neuronaler multisensorischer Integration (368482240)},
pid = {G:(DE-HGF)POF3-574 / G:(DE-Juel1)PHD-NO-GRANT-20170405 /
$G:(DE-Juel1)aca_20190115$ / G:(EU-Grant)720270 /
G:(EU-Grant)785907 / G:(EU-Grant)945539 / G:(EU-Grant)754304
/ $G:(Grant)248828_20200305$ / $G:(Grant)250128_20200305$ /
G:(GEPRIS)347572269 / $G:(DE-Juel1)jinb33_20191101$ /
G:(GEPRIS)368482240},
typ = {PUB:(DE-HGF)1},
doi = {10.12751/NNCN.BC2020.0263},
url = {https://juser.fz-juelich.de/record/886165},
}