Hauptseite > Publikationsdatenbank > Systematic textual and graphical description of connectivity > print |
001 | 886165 | ||
005 | 20240313094854.0 | ||
024 | 7 | _ | |a 10.12751/NNCN.BC2020.0263 |2 doi |
037 | _ | _ | |a FZJ-2020-04298 |
041 | _ | _ | |a eng |
100 | 1 | _ | |a Senk, Johanna |0 P:(DE-Juel1)162130 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Bernstein Conference 2020 |c online |d 2020-09-29 - 2020-10-01 |w online |
245 | _ | _ | |a Systematic textual and graphical description of connectivity |
260 | _ | _ | |c 2020 |
336 | 7 | _ | |a Abstract |b abstract |m abstract |0 PUB:(DE-HGF)1 |s 1607075172_15457 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Abstract |2 DataCite |
336 | 7 | _ | |a OTHER |2 ORCID |
520 | _ | _ | |a Sustainable research on neuronal network models requires published models to be understandable, reproducible, and extendable. Left-out details about mathematical concepts and assumptions, algorithmic implementations, or parameterizations adversely affect progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description [1]. Here, we review models made available by the Computational Neuroscience community in databases like ModelDB [2] and Open Source Brain [3], and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. Based on this review, we derive a set of connectivity concepts in combination with guidelines for a comprehensive, complete, and concise description of network connectivity. In particular, we propose a unified graphical notation for network diagrams to foster an intuitive understanding of network properties (compare [4]). This work also aims to guide the implementation of connection routines in simulation software like NEST [5] and neuromorphic hardware systems.References1. Nordlie E et al. (2009) Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol. 5(8):e1000456, 10.1371/journal.pcbi.10004562. McDougal R A et al. (2017) Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci. 42:1-10, 10.1007/s10827-016-0623-73. Gleeson P et al. (2019) Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating and Developing Standardized Models of Neurons and Circuits. Neuron. 103(3):395-411.e5, 10.1016/j.neuron.2019.05.0194. Le Novère N et al. (2009) The Systems Biology Graphical Notation. Nat Biotechnol. 27(8):735-41, 10.1038/nbt.15585. Gewaltig M-O and Diesmann M (2007). NEST (NEural Simulation Tool). Scholarpedia. 2(4):1430, 10.4249/scholarpedia.1430 |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 0 |f POF III |
536 | _ | _ | |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |c PHD-NO-GRANT-20170405 |x 1 |
536 | _ | _ | |a Advanced Computing Architectures (aca_20190115) |0 G:(DE-Juel1)aca_20190115 |c aca_20190115 |x 2 |f Advanced Computing Architectures |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |x 3 |f H2020-Adhoc-2014-20 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |x 4 |f H2020-SGA-FETFLAG-HBP-2017 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |x 5 |
536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |x 6 |f H2020-FETHPC-2016 |
536 | _ | _ | |a DigiBrain - DL: DigiBrain - From genes to brain function in health and disease (248828_20200305) |0 G:(Grant)248828_20200305 |c 248828_20200305 |x 7 |
536 | _ | _ | |a COBRA - COmputing BRAin signals (COBRA): Biophysical computations of electrical and magnetic brain signals (250128_20200305) |0 G:(Grant)250128_20200305 |c 250128_20200305 |x 8 |
536 | _ | _ | |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269) |0 G:(GEPRIS)347572269 |c 347572269 |x 9 |
536 | _ | _ | |a Brain-Scale Simulations (jinb33_20191101) |0 G:(DE-Juel1)jinb33_20191101 |c jinb33_20191101 |x 10 |f Brain-Scale Simulations |
536 | _ | _ | |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240) |0 G:(GEPRIS)368482240 |c 368482240 |x 11 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Kriener, Birgit |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Voges, Nicole |0 P:(DE-Juel1)168479 |b 2 |
700 | 1 | _ | |a Schüttler, Lisa |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Gramelsberger, Gabriele |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Plesser, Hans Ekkehard |0 P:(DE-Juel1)169781 |b 5 |u fzj |
700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 6 |u fzj |
700 | 1 | _ | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 7 |u fzj |
773 | _ | _ | |a 10.12751/NNCN.BC2020.0263 |
856 | 4 | _ | |u https://dx.doi.org/10.12751/nncn.bc2020.0263 |
909 | C | O | |o oai:juser.fz-juelich.de:886165 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)162130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)169781 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)138512 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | _ | _ | |a abstract |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|