000886180 001__ 886180
000886180 005__ 20210130010612.0
000886180 0247_ $$2doi$$a10.1021/acs.macromol.0c01896
000886180 0247_ $$2ISSN$$a0024-9297
000886180 0247_ $$2ISSN$$a1520-5835
000886180 0247_ $$2Handle$$a2128/26276
000886180 0247_ $$2WOS$$aWOS:000595527800012
000886180 037__ $$aFZJ-2020-04308
000886180 082__ $$a540
000886180 1001_ $$00000-0003-2377-2268$$aDittrich, Jonas$$b0
000886180 245__ $$aCumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly( N -vinylcaprolactam) in Aqueous Solution
000886180 260__ $$aWashington, DC$$bSoc.$$c2020
000886180 3367_ $$2DRIVER$$aarticle
000886180 3367_ $$2DataCite$$aOutput Types/Journal article
000886180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606226551_31558
000886180 3367_ $$2BibTeX$$aARTICLE
000886180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886180 3367_ $$00$$2EndNote$$aJournal Article
000886180 520__ $$aPoly(N-vinylcaprolactam) (PNVCL) polymers are stimuli-responsive and change their conformation in aqueous solutions upon changes in salt concentration, concentration of organic solvents, or temperature, making these molecules highly interesting for tailored release of drugs or fabrication of sensors or actuators. At lower critical solution temperature (LCST), PNVCL chains undergo a transition from a coil to a globule and become insoluble. In contrast to other polymers, however, PNVCL has received much less attention as to elucidating driving forces of its coil-to-globule transition at an atomistic level. Here, we show by a combined computational and experimental study that upon temperature increase, PNVCL chains dissolved in water experience an increase of intramolecular interactions between C3 and C4 of the caprolactam ring. Therefore, more favorable cavity formation energies and the increase of intramolecular interactions outweigh the loss in polar and hydrophobic solvation, and the loss of configurational entropy in the coil-to-globule transition and, thus, may be considered driving forces of the polymer’s collapse at LCST. These results are based on molecular dynamics simulations of in total 600 μs length and transition (free) energy computations that have been validated internally and against experimental data. We systematically tested the influence of the polymer’s length, concentration, tacticity, of the thermodynamic ensemble, and of the water model. Tacticity was found to be most influential, with atactic polymers showing the strongest tendency to collapse. The presented approach should be applicable to scrutinize at the atomistic level the impact of, for example, ion and polymer dispersity on the coil-to-globule transition of PNVCL, and the LCST behavior of other polymers.
000886180 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000886180 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000886180 536__ $$0G:(DE-Juel1)BioSC$$aBioSC - Bioeconomy Science Center (BioSC)$$cBioSC$$x2
000886180 588__ $$aDataset connected to CrossRef
000886180 7001_ $$0P:(DE-HGF)0$$aKather, Michael$$b1
000886180 7001_ $$0P:(DE-HGF)0$$aHolzberger, Anna$$b2
000886180 7001_ $$00000-0003-1825-7798$$aPich, Andrij$$b3
000886180 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$eCorresponding author
000886180 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.0c01896$$gp. acs.macromol.0c01896$$n22$$p9793–9810$$tMacromolecules$$v53$$x1520-5835$$y2020
000886180 8564_ $$uhttps://juser.fz-juelich.de/record/886180/files/acs.macromol.0c01896.pdf
000886180 8564_ $$uhttps://juser.fz-juelich.de/record/886180/files/Manuskript_PNVCL_rev2.pdf$$yPublished on 2020-11-04. Available in OpenAccess from 2021-11-04.
000886180 8564_ $$uhttps://juser.fz-juelich.de/record/886180/files/Supporting%20Information.pdf$$yRestricted
000886180 909CO $$ooai:juser.fz-juelich.de:886180$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000886180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000886180 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000886180 9141_ $$y2020
000886180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000886180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2018$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2018$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000886180 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000886180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000886180 920__ $$lyes
000886180 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000886180 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000886180 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000886180 980__ $$ajournal
000886180 980__ $$aVDB
000886180 980__ $$aUNRESTRICTED
000886180 980__ $$aI:(DE-Juel1)JSC-20090406
000886180 980__ $$aI:(DE-Juel1)NIC-20090406
000886180 980__ $$aI:(DE-Juel1)IBI-7-20200312
000886180 9801_ $$aFullTexts