000886181 001__ 886181
000886181 005__ 20230217124238.0
000886181 0247_ $$2doi$$a10.1103/PhysRevD.101.014501
000886181 0247_ $$2ISSN$$a0556-2821
000886181 0247_ $$2ISSN$$a1089-4918
000886181 0247_ $$2ISSN$$a1538-4500
000886181 0247_ $$2ISSN$$a1550-2368
000886181 0247_ $$2ISSN$$a1550-7998
000886181 0247_ $$2ISSN$$a2470-0010
000886181 0247_ $$2ISSN$$a2470-0029
000886181 0247_ $$2Handle$$a2128/26067
000886181 0247_ $$2altmetric$$aaltmetric:69082583
000886181 0247_ $$2WOS$$aWOS:000505988400002
000886181 037__ $$aFZJ-2020-04309
000886181 082__ $$a530
000886181 1001_ $$00000-0002-6996-6802$$aScherzer, M.$$b0$$eCorresponding author
000886181 245__ $$aControlling complex Langevin simulations of lattice models by boundary term analysis
000886181 260__ $$aMelville, NY$$bInst.812068$$c2020
000886181 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-01-06
000886181 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-01-01
000886181 3367_ $$2DRIVER$$aarticle
000886181 3367_ $$2DataCite$$aOutput Types/Journal article
000886181 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604669333_3506
000886181 3367_ $$2BibTeX$$aARTICLE
000886181 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000886181 3367_ $$00$$2EndNote$$aJournal Article
000886181 520__ $$aOne reason for the well-known fact that the complex Langevin (CL) method sometimes fails to converge or converges to the wrong limit has been identified long ago: it is insufficient decay of the probability density either near infinity or near poles of the drift, leading to boundary terms that spoil the formal argument for correctness. To gain a deeper understanding of this phenomenon, in a previous paper [Phys. Rev. D 99, 014512 (2019)] we have studied the emergence of such boundary terms thoroughly in a simple model, where analytic results can be compared with numerics. Here we continue this type of analysis for more physically interesting models, focusing on the boundaries at infinity. We start with Abelian and non-Abelian one-plaquette models, and then we proceed to a Polyakov chain model and finally to high density QCD and the 3D XY model. We show that the direct estimation of the systematic error of the CL method using boundary terms is in principle possible.
000886181 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000886181 542__ $$2Crossref$$i2020-01-06$$uhttps://creativecommons.org/licenses/by/4.0/
000886181 588__ $$aDataset connected to CrossRef
000886181 7001_ $$0P:(DE-HGF)0$$aSeiler, E.$$b1
000886181 7001_ $$0P:(DE-Juel1)173739$$aSexty, D.$$b2
000886181 7001_ $$0P:(DE-HGF)0$$aStamatescu, I.-O.$$b3
000886181 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.101.014501$$bAmerican Physical Society (APS)$$d2020-01-06$$n1$$p014501$$tPhysical Review D$$v101$$x2470-0010$$y2020
000886181 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.101.014501$$gVol. 101, no. 1, p. 014501$$n1$$p014501$$tPhysical review / D$$v101$$x2470-0010$$y2020
000886181 8564_ $$uhttps://juser.fz-juelich.de/record/886181/files/PhysRevD.101.014501.pdf$$yOpenAccess
000886181 8564_ $$uhttps://juser.fz-juelich.de/record/886181/files/PhysRevD.101.014501.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000886181 909CO $$ooai:juser.fz-juelich.de:886181$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000886181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173739$$aForschungszentrum Jülich$$b2$$kFZJ
000886181 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000886181 9141_ $$y2020
000886181 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000886181 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000886181 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000886181 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000886181 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000886181 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000886181 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000886181 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000886181 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000886181 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000886181 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000886181 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000886181 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000886181 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000886181 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000886181 980__ $$ajournal
000886181 980__ $$aVDB
000886181 980__ $$aUNRESTRICTED
000886181 980__ $$aI:(DE-Juel1)JSC-20090406
000886181 9801_ $$aFullTexts
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.014512
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.054508
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-011-1756-5
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817501019
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2013.06.019
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2013.04.062
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2013)073
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0920-5632(92)90265-T
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.1019
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.76.114501
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2014)131
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.114505
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2019)022
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/09/018
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2016)087
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.1854
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.114515
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2017)044
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2018)128
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)020
000886181 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.81.125007