000008873 001__ 8873
000008873 005__ 20240709081618.0
000008873 0247_ $$2DOI$$a10.1007/s10546-009-9444-9
000008873 0247_ $$2WOS$$aWOS:000274013600005
000008873 037__ $$aPreJuSER-8873
000008873 041__ $$aeng
000008873 082__ $$a550
000008873 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000008873 1001_ $$0P:(DE-Juel1)129461$$aGraf, A.$$b0$$uFZJ
000008873 245__ $$aBoundedness of turbulent temperature probability distributions, and their relation to the vertical profile in the convective boundary layer
000008873 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2010
000008873 300__ $$a459 - 486
000008873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008873 3367_ $$2DataCite$$aOutput Types/Journal article
000008873 3367_ $$00$$2EndNote$$aJournal Article
000008873 3367_ $$2BibTeX$$aARTICLE
000008873 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008873 3367_ $$2DRIVER$$aarticle
000008873 440_0 $$021781$$aBoundary-Layer Meteorology$$v134$$x0006-8314$$y3
000008873 500__ $$aWe gratefully acknowledge field assistance by Rainer Harms (Julich Research Centre) and Martin Lennefer (Bonn University), financial support by the Helmholtz-funded FLOWatch project and by the Transregional collaborative research centre (SFB/TR) 32 "Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation" funded by the Deutsche Forschungsgemeinschaft (DFG), by the DFG project GR2687/3-1, and valuable comments of two anonymous referees.
000008873 520__ $$aHigher-order moments, minima and maxima of turbulent temperature and water vapour mixing ratio probability density functions measured with an eddy-covariance system near the ground were related to each other and to vertical boundary-layer profiles of the same scalars obtained through airborne soundings. The dependence of kurtosis on squared skewness showed a kurtosis intercept below the Gaussian expectation, suggesting a compression of the probability density function by the presence of natural boundaries. This hypothesis was corroborated by comparing actual minima and maxima of turbulent fluctuations to estimates obtained from the first four sample moments by fitting a four-parameter beta distribution. The most sharply defined boundaries were found for the minima of temperature datasets during the day, indicating that negative temperature fluctuations at the sensor are limited by the availability of lower temperatures in the boundary layer. By comparison to vertical profiles, it could be verified that the turbulent minimum of temperature near the ground is close to the minimum of potential temperature in the boundary layer. The turbulent minimum of water vapour mixing ratio was found to be equal to the mixing ratio at a height above the minimum of the temperature profile. This height roughly agrees with the top of the non-local unstable domain according to bulk Richardson number profiles. We conclude that turbulence statistics measured near the surface cannot be solely explained by local effects, but contain information about the whole boundary layer including the entrainment zone.
000008873 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000008873 588__ $$aDataset connected to Web of Science
000008873 65320 $$2Author$$aEddy-covariance
000008873 65320 $$2Author$$aHigher order moments
000008873 65320 $$2Author$$aKurtosis
000008873 65320 $$2Author$$aProbability density function
000008873 65320 $$2Author$$aSkewness
000008873 65320 $$2Author$$aTurbulence
000008873 650_7 $$2WoSType$$aJ
000008873 7001_ $$0P:(DE-HGF)0$$aSchüttemeyer, D.$$b1
000008873 7001_ $$0P:(DE-Juel1)16201$$aGeiss, H.$$b2$$uFZJ
000008873 7001_ $$0P:(DE-Juel1)VDB783$$aKnaps, A.$$b3$$uFZJ
000008873 7001_ $$0P:(DE-Juel1)25021$$aMöllmann-Coers, M.$$b4$$uFZJ
000008873 7001_ $$0P:(DE-HGF)0$$aSchween, J.H.$$b5
000008873 7001_ $$0P:(DE-HGF)0$$aKollet, S.$$b6
000008873 7001_ $$0P:(DE-HGF)0$$aNeininger, B.$$b7
000008873 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b8$$uFZJ
000008873 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b9$$uFZJ
000008873 773__ $$0PERI:(DE-600)1477639-x$$a10.1007/s10546-009-9444-9$$gVol. 134, p. 459 - 486$$p459 - 486$$q134<459 - 486$$tBoundary layer meteorology$$v134$$x0006-8314$$y2010
000008873 8567_ $$uhttp://dx.doi.org/10.1007/s10546-009-9444-9
000008873 909CO $$ooai:juser.fz-juelich.de:8873$$pVDB
000008873 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008873 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000008873 9141_ $$y2010
000008873 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000008873 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000008873 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x2
000008873 9201_ $$0I:(DE-Juel1)VDB224$$gS$$kS$$lAbteilung Sicherheit und Strahlenschutz$$x3
000008873 970__ $$aVDB:(DE-Juel1)118123
000008873 980__ $$aVDB
000008873 980__ $$aConvertedRecord
000008873 980__ $$ajournal
000008873 980__ $$aI:(DE-Juel1)IEK-8-20101013
000008873 980__ $$aI:(DE-Juel1)IBG-3-20101118
000008873 980__ $$aI:(DE-Juel1)VDB224
000008873 980__ $$aUNRESTRICTED
000008873 981__ $$aI:(DE-Juel1)ICE-3-20101013
000008873 981__ $$aI:(DE-Juel1)IEK-8-20101013
000008873 981__ $$aI:(DE-Juel1)IBG-3-20101118
000008873 981__ $$aI:(DE-Juel1)VDB224