001     887651
005     20210130010613.0
024 7 _ |a 10.1016/j.aop.2020.168327
|2 doi
024 7 _ |a 0003-4916
|2 ISSN
024 7 _ |a 1096-035X
|2 ISSN
024 7 _ |a 2128/26085
|2 Handle
024 7 _ |a WOS:000596612200002
|2 WOS
024 7 _ |a altmetric:44748140
|2 altmetric
037 _ _ |a FZJ-2020-04313
082 _ _ |a 530
100 1 _ |a Zeuch, Daniel
|0 P:(DE-Juel1)170090
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Exact rotating wave approximation
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604928672_19101
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Hamiltonian of a linearly driven two-level system, or qubit, in the standard rotating frame contains non-commuting terms that oscillate at twice the drive frequency, , rendering the task of analytically finding the qubit’s time evolution nontrivial. The application of the rotating wave approximation (RWA), which is suitable only for drives whose amplitude, or envelope, , is small compared to and varies slowly on the time scale of , yields a simple Hamiltonian that can be integrated relatively easily. We present a series of corrections to the RWA Hamiltonian in , resulting in an effective Hamiltonian whose time evolution is accurate also for time-dependent drive envelopes in the regime of strong driving, i.e., for . By extending the Magnus expansion with the use of a Taylor series we introduce a method that we call the Magnus–Taylor expansion, which we use to derive a recurrence relation for computing the effective Hamiltonian. We then employ the same method to derive kick operators, which complete our theory for non-smooth drives. The time evolution generated by our kick operators and effective Hamiltonian, both of which depend explicitly on the envelope and its time derivatives, agrees with the exact time evolution at periodic points in time. For the leading Hamiltonian correction we obtain a term proportional to the first derivative of the envelope, which competes with the Bloch–Siegert shift.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hassler, Fabian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Slim, Jesse J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a DiVincenzo, David P.
|0 P:(DE-Juel1)143759
|b 3
|u fzj
773 _ _ |a 10.1016/j.aop.2020.168327
|g Vol. 423, p. 168327 -
|0 PERI:(DE-600)1461336-0
|p 168327 -
|t Annals of physics
|v 423
|y 2020
|x 0003-4916
856 4 _ |u https://juser.fz-juelich.de/record/887651/files/1807.02858.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887651
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN PHYS-NEW YORK : 2018
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21