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Abstract

The Hamiltonian of a linearly driven two-level system, or qubit, in the standard rotating frame contains
non-commuting terms that oscillate at twice the drive frequency, w, rendering the task of analytically finding
the qubit’s time evolution nontrivial. The application of the rotating wave approximation (RWA), which is
suitable only for drives whose amplitude, or envelope, Hy(t), is small compared to w and varies slowly on the
time scale of 1/w, yields a simple Hamiltonian that can be integrated relatively easily. We present a series
of corrections to the RWA Hamiltonian in 1/w, resulting in an effective Hamiltonian whose time evolution
is accurate also for time-dependent drive envelopes in the regime of strong driving, i.e., for |Hy(t)| < w.
By extending the Magnus expansion with the use of a Taylor series we introduce a method that we call
the Magnus-Taylor expansion, which we use to derive a recurrence relation for computing the effective
Hamiltonian. We then employ the same method to derive kick operators, which complete our theory for
non-smooth drives. The time evolution generated by our kick operators and effective Hamiltonian, both of
which depend explicitly on the envelope and its time derivatives, agrees with the exact time evolution at
periodic points in time. For the leading Hamiltonian correction we obtain a term proportional to the first
derivative of the envelope, which competes with the Bloch-Siegert shift.

Keywords: quantum computation and information, strongly driven quantum systems, beyond the rotating
wave approximation, time-dependent perturbation theory, stroboscopic time evolution, Magnus expansion
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1. Introduction

Coherent driving of quantum systems plays a central role in many areas of physics and chemistry [].
The specific task with arguably the highest demands on the accuracy of the desired operations carried out by
such driving is the manipulation of two-level systems, or qubits, that form the basic elements of a quantum
computer [2, [3].

Perhaps the simplest abstraction of the interaction between light and matter is formalized by the semi-
classical Rabi model [4], which can be used to describe a qubit interacting with a classical, circularly polarized
drive. We study the related and, from a theoretical point of view, significantly richer problem of a qubit
subject to a linearly polarized drive, which has been considered early on by Bloch and Siegert [5]. Denoting
the qubit and drive frequencies by wy and w, respectively, the system Hamiltonian in the laboratory frame
reads (h = 1)

wo Hl (t)

Hlab(t) == 70} +

where Hi(t) is the time-dependent amplitude function, or envelope, of the applied drive. We denote the
Pauli matrices by o; with i = z, y and z, and assume that the drive has a constant phase offset, ¢. In our
study we work in a suitable frame of reference, which rotates around the z axis with the frequency w of the
applied field.

The minimal time required to effectively manipulate the state of a qubit by such driving is inversely
proportional to the drive strength H;(t). One thus needs a strong drive for fast pulses, which are often
desired because they allow a large number of operations to be carried out within the coherence time of the
qubit. The ratio of the amplitude H;(t) and the qubit resonance frequency w can be used to distinguish
between different parameter regimes. The regime perhaps best understood is that for which the drive
amplitude is both constant in time and small compared to the drive frequency, H;/w < 1, also known
as the weak coupling regime. In this case, resonant driving (w = wp) results in Rabi oscillations with
frequency proportional to Hi. In the present study, we are concerned with the strong coupling regime in
which Hy/w < 1, and place special interest in the consequences on the qubit’s time evolution due to a
time-varying field strength H; = Hy(t).

The Hamiltonian of a linearly-driven qubit in the standard rotating frame contains non-commuting
terms that oscillate quickly, at twice the drive frequency [6]. If these terms, which can be attributed to
the counter-rotating field of the drive, are fully taken into account, there is no simple analytic form for
the qubit’s exact time evolution. If the drive is weak (|H;(t)] < w), near resonant (w = wyp), and varies
only slightly on the time scale of the inverse qubit frequency 1/w, the application of the rotating wave
approximation (RWA) yields a simple Hamiltonian which is straightforward to integrate [7]. However, for
moderately strong field strengths |H;(t)|/w £ 0.01 the RWA is no longer applicable for many quantum-
information related applications, and corrections that scale as some power in 1/w, such as the well-known
Bloch-Siegert shift [5], may be used to improve the accuracy of the predicted time evolution.

The problem of a periodically driven two-level system has been studied using the Magnus expansionﬂ
which provides a means of performing time-dependent perturbation theory at the Hamiltonian level in
which unitarity of the time evolution is inherently preserved [OHIT]. The dressed-state formalism [I2] has
also been employed in a study concerning the time evolution of a periodically driven multi-level system [13].

cos(wt + @)y, (1)

IWe note that Ref. [§] investigates the problem of a spin in a time-dependent magnetic field using an approach related to
the Magnus expansion. In that work the time evolution operator is written as a product of three consecutive rotations about
mutually perpendicular axes resulting in differential equations that are solved perturbatively.
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Most work on the time evolution under periodic driving of quantum systems, however, is based on Floquet
theory, starting with an influential analysis by Shirley in 1965 [I4]. While the basic formulation of Floquet’s
theorem may be used directly in such an investigation [I5HI7], the more common Floquet approach is to
obtain an infinite dimensional, time-independent Hamiltonian by using an extended Hilbert space [14} [1§],
and then introduce a two-time formalism that allows the formal separation of a micromotion and an effective,
coarse-grained evolution [I8-23].

The first time that the Magnus expansion, one of the main methods used in the present investigation, has
been applied to coherent driving of quantum systems has been in the context of nuclear magnetic resonance
[24, 25]. This paved the path for what is known as average Hamiltonian theory [24, [26], in which effective
Hamiltonians are used to approximate the time evolution of the driven system. In the meantime, the Magnus
expansion has also been combined with the Floquet approach [16], 27H29]; this introduced novel concepts
such as kick operators [16] 29] (see also Ref. [30]) and a gauge degree of freedom of effective Hamiltonians
[29]. A recent study determines the stroboscopic time evolution via a Magnus expansion for a driven qubit
using a frequency chirp [31]. Many of these concepts play an important role in the present work.

Most previous work that aims at determining the time evolution operator for the driven qubit has
assumed periodic Hamiltonians [I3HI8| 20, 27H30]. While several analyses [13] 211, [22] 29H31] explore some
consequences due to adiabatic changes of drive parameters, Ref. [23] explicitly determines a time evolution
operator assuming a nonzero first derivative of these drive parameters. However, realistic drives are often
turned on non-adiabatically, and there may be substantial effects due to a nontrivial time dependence of
the drive envelope. Such complications are of particular importance for strong or shaped pulses, e.g., to
minimize leakage out of the computational space via DRAG shaping for superconducting qubits [32], or to
increase the fidelity of gates for singlet-triplet qubits [33] [34]. An investigation that allows for relatively
generic pulse amplitudes is that of Ref. [35], where a recursive procedure for obtaining the wave function of
the driven qubit is developed; this investigation, however, has been conducted for ultra-strong driving with
|H1(t)| > w, and thus for parameters that lie outside the range considered here. Reference [36] establishes
a formalism for reverse-engineering drive functions that result in certain qubit trajectories. This survey
makes it evident that the problem of strictly periodic driving has been discussed extensively, while relatively
little attention has been devoted to the problem considered here, i.e., determining the time evolution for
the system governed by the Hamiltonian for a wide class of time-dependent amplitude functions in the
strong coupling regime.

We note that in Ref. [37], Giscard et al. introduced the path-sum method that solves the Volterra integral
equation of the second kind using a Neumann series. Schroedinger’s equation is a special case of the Volterra
equation, and so this path-sum method, as has been demonstrated recently [38], can be used to approximate
the time evolution of the same driven qubit problem considered here (including time-dependent envelopes).
A noteworthy difference between the path-sum method and our perturbative effective Hamiltonian method
is that only in our case the time evolution operator is always unitary when breaking the perturbation series
at finite order—this is a direct consequence of our usage of the Magnus expansion.

To approach the driven qubit problem described above, we introduce the Magnus-Taylor expansion, a
new method for time-dependent perturbation theory [see Sec. . When considering, for example, the
rotating-frame Hamiltonian that corresponds to Eq. , this method combines a Magnus expansion with a
Taylor series of the amplitude function H;(t) in a way that allows us to evaluate the integrals occurring in
the Magnus expansion asymptotically. Using this Magnus-Taylor expansion, we derive our main results: a
time-dependent effective Hamiltonian and associated kick operators, each given as a series expansion in the
inverse drive frequency. This Hamiltonian, in combination with the kick operators, generates what we call
an effective time evolution that agrees with the exact time evolution at periodic, or stroboscopically-defined,
points in time.

Our effective Hamiltonian, denoted Heg, explicitly depends not only on the envelope Hi(t), but also on
its time derivatives Hl(t), H, (t), ..., all of which are assumed to change only slightly over the period of the
drive. To be precise, in our theory Hog(t) is an explicit local function of the envelope and its derivatives,
ie.,

Henr(t) = f(Hi(1), Hi(t), Hy(t),...). (2)



We took inspiration in this from the Local Density Approximation of the Density Functional Theory for
electronic structure. Our central assumption on a slowly varying, weak drive amplitude can be formulated
as follows: for all times ¢ we require

Ok
|Hy (1) < 1/wh? Yk € Ny, (3)

N

where 1(1; 1 denotes the kth derivative of the envelope. While this assumption seems to considerably limit the
applicability of our theory, below in Sec. [I.4] we introduce the role of kick operators that are used to account
for more realistic drives. From Eq. it is clear that Heg has only a slow time dependence compared to
the rotating-frame Hamiltonian, which, as noted above, contains terms oscillating at frequency 2w. The
effective Hamiltonian is therefore, similar to the RWA Hamiltonian, relatively easy to integrate numerically.
At the same time, by computing the effective Hamiltonian series up to appropriate order in 1/w, our method
allows one to determine the stroboscopic time evolution up to any desired accuracy. Since our approach
combines the advantageous features of the RWA with the ability to achieve arbitrarily high accuracy, we
call our effective Hamiltonian method the “exact” rotating wave approximation.

The rest of the paper is organized as follows. In what remains of the Introduction, we describe our
anticipated solution to the driven qubit problem. Section [I.I]sets the stage by transforming the Hamiltonian
to the standard rotating frame. Most importantly, Secs. and clarify how our concept of effective
Hamiltonians is fundamentally tied to the idea of a stroboscopic time evolution. In Sec. we introduce a
gauge degree of freedom, an inherent aspect our effective Hamiltonian theory, together with kick operators,
which extend our theory for many realistic drive envelopes. In Sec. 2] we derive the recursive procedure
that yields the desired Hamiltonian as a series expansion in 1/w. To do this, we first apply the Magnus
expansion to the driven-qubit problem [Sec.[2.1], next introduce the Magnus-Taylor expansion as a new tool
for time-dependent perturbation theory [Sec7 and then apply this tool to the problem at hand to derive
the central recurrence relation generating our effective Hamiltonian [Sec. . We also present an exemplary
calculation of an effective Hamiltonian [Sec. , and derive a simplified computation method for effective
Hamiltonians assuming a constant drive envelope [Sec. . Deploying the Magnus-Taylor expansion a
second time, in Sec. [3| we derive the kick operators as a series expansion in 1/w, and conclude in Sec.
contains explicit results for our effective Hamiltonians up to second order in 1/w.

1.1. Rotating Frame

We shift our discussion from the laboratory frame to the standard rotating frame, which is associated
vyith thq drivg: freguency w. The corresponding Haurpiltoniaun7 defined by the usual transformation H,.x =
UtHiawU — iUT%U with Hiap given in Eq. and U(t) = e~ t=/2 [39], evaluates to

Hy(t A
Hyot(t) = %(cos(gzﬁ)am + cos(2wt + @), + sin(@)o, — sin(2wt + ¢)oy) + 50 (4)
Here we have introduced the detuning A = wy — w. Note that after this transformation the period of the
counter-rotating field of the drive (henceforth: the drive) is
te =7/w, (rotating frame). (5)

For simplicity, when considering examples we often restrict our discussion to drives that are in resonance
with the qubit, i.e., w = wg, or A = 0, and that have zero phase offset, ¢ = 0. For this special case the
rotating-frame Hamiltonian reduces to

_ Hy (1)
T4

Our goal is to determine the time evolution of the driven qubit. The problem at hand is thus to solve
the time-dependent Schroedinger equation in the rotating frame,

i(9/01)[4(t)) = Hrot (1)|9(2)), (7)
4

Hyot(t) (04 + cos(2wt)o, — sin(2wt)oy), (A=0, ¢ =0). (6)



whose formal solution is |¢(tf)) = U(ts,t;)|¢(t;)) for some initial and final times ¢; and tf, respectively.
Here the time evolution operator takes the usual form

Ulty,t;) = 'Te_iftif dTHrot(T), .

where 7T is the time ordering operator. Note that here, given that the Hamiltonian does not commute
with itself at different times, the evaluation of this time-ordered product is nontrivial even in the simplest
case of a constant drive envelope.

1.2. Effective Hamiltonians

In the weak coupling limit, defined by a small drive amplitude |H;(t)| < w, it is justified to apply
the rotating wave approximation [40] (or RWA). To do this, one neglects the fast-oscillating terms in the
rotating-frame Hamiltonian, resulting in a significantly simpler Hamiltonian that depends on time solely
through the amplitude function H; (¢),

Hrwa(t) = HlT(t)(cos(@aI + sin(¢)oy) + %0’2 (9)
_ H14(t)% (A=0, 6 =0). (10)

If A =0 and, for example, the qubit state is initialized to |¢)(t = 0)) = |0), the RWA trajectory of |¢(t))
obtained by solving Eq. results in Rabi oscillations (with period 47/ H; for constant Hy). As noted above,
for field strengths |Hy(¢)| 2 0.0lw the RWA if often not applicable. The effective Hamiltonian introduced
in this paper generalizes the RWA Hamiltonian in the sense that it can be used to approximate the exact
trajectory for strong drive strengths up to |H;(¢)| S w.

A central feature of our effective Hamiltonian is that it generates a stroboscopic time evolution formalized
and exemplified below in Sec. We describe this evolution as being “stroboscopic” because it agrees with
the time evolution of the exact Hamiltonian at points equally spaced in time,

{to,to + te,to + 2t ... }. (11)

Here the spacing is equal to the drive period in the rotating frame, ¢, = m/w [cf. Eq. (5))], and the constant
time offset is chosen to be ¢y € [0,t.). The two cases of time-independent and time-dependent drive envelopes
are qualitatively different.

1.2.1. Time-Independent Drive Envelope

Let us first consider the case of constant H;(t) = Hy. As noted above, usage of the RWA is not always
justified if the amplitude H; is an appreciable fraction of the drive frequency w. A better, systematic approx-
imation for the time evolution can be obtained by our effective Hamiltonian for constant drive envelopes,
which depends only on the time offset ¢y defining the set of stroboscopic points . We introduce this
Hamiltonian as a series expansion in 1/w,

Hesr(to) = Y h’;(,io)v (12)
k=0

which, being independent of the current time ¢, allows for a simple evaluation of the time evolution operator
(8). Note that this lack of dependence on time ¢ follows directly from H;(t) = H; combined with the fact
that the effective Hamiltonian’s time dependence is solely through the amplitude function [cf. Eq. ]

We exemplify some qualitative features beyond the RWA for the simple case of resonant driving (A = 0)
with zero phase offset (¢ = 0), in which the system is governed by the Hamiltonian @ The effective



Hamiltonian, which can be computed using the method derived in Sec. |2} given up to seventh order in 1/w
and setting, for simplicity, tqg = 0, reads

H  H? H} Hy 3H} 61H¢
ty=0) = —lo,—lo. - = 2= = :
Hes(to = 0) 17" 3207 T 256027 5126377 81926477 7864320
341HT 937H}

8

T 1258291220°° 1811930328007 0 T O/ (13)
Here, the first term is the RWA Hamiltonian given in Eq. , while all other terms are corrections beyond
the RWA. The first-order contribution, —(H?/32w)o, is the well known Bloch Siegert shift [5], which
indicates a shift in the qubit resonance frequency on account of its proportionality to o,. Conversely,
the correction terms proportional to o, indicate a decrease in the effective driving strength, or the Rabi
frequency.

1.2.2. Time-Dependent Drive Envelope

The main purpose of this paper is to develop a theory for computing effective Hamiltonians similar to
that given in Eq. (13]), but for time-dependent envelopes H;(t). Consistent with a 1/w expansion we assume
the drive satisfies Eq. , which states that the absolute values of the envelope and its derivatives are small
with respect to w. This effective Hamiltonian, in contrast to the Hamiltonian , depends not only on the
time offset tg but also on the current time ¢,

oo

Hen(tito) = Y

k=0

hi(t;to)

o (14)

An example effective Hamiltonian up to order 1/w? for the case of resonant driving and zero phase offset,

or A =0 and ¢ = 0, together with ¢y = 0 is given by
Hi(t) — Hi(t)? Hl(t)o_ _H@®? Hy(t)
4 7" 32w 7 8w Y 256w? 7 16w?

Heff(t;to = O) = oz + O(l/w3)7 (15)
which, in accordance with Eq. , is an explicit function of the derivatives H; and H; as well as H; itself.
More generic examples of effective Hamiltonians for variable ¢o, A and ¢ are presented in[Appendix Al When
comparing this Hamiltonian with that given in Eq. , we find that for the lowest-order correction
~ 1/w there is, besides the Bloch-Siegert shift, a term proportional to H;(t). Consulting one
can find yet another first-order correction proportional to A H; for the case of more generic, off-resonant
driving [see, e.g., Eq. ] Note that, as expected, for constant H;(t) = H; the effective Hamiltonian
reduces to that for time-independent envelopes given above in Eq. (13).

1.8. Stroboscopic Time Evolution

Figure[f]portrays the utility of the exact rotating wave approximation by means of various time evolutions
of a driven qubit corresponding to an on-resonant drive with zero phase offset (A = 0 and ¢ = 0). The
rotating-frame Hamiltonian governing this system is given by Eq. @ In the RWA, all time evolutions in
this figure correspond to single-qubit NOT gates, or m-pulses. In the motivation of our analysis we focus on
NOT gates, because in quantum information processing the NOT gate generally corresponds to the maximal
manipulation that is applied to a single qubit. The exact Bloch-sphere trajectories [¢(t)) are the solutions
to the Schroedinger equation , and thus follow from the time evolution operator with ¢; = 0 and the
chosen initial condition |(¢; = 0)) = |0). The shown trajectories, or paths, then correspond to the curve
traced out by the tip of the Bloch vector |¢(t)).

We contrast the exact qubit trajectories to those generated by both the RWA and effective Hamiltonians,
which correspond to |¢(t)) in Eq. [with the same initial condition |¢(0)) = |0)] upon replacing H,ot by
Hrwa and Heg, respectively. Starting from the time evolution operator , the RWA trajectory is then
obtained via

Urwa(ty,0) = Tei o drttmwa(r) e ¥ (A=0, ¢=0), (16)
6
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Figure 1: Various Bloch-sphere trajectories, or paths, [¢(t)) [cf. Eq. ] of a driven qubit initialized to |0) for different
envelopes corresponding to m-pulses in the RWA. The paths shown in (a) correspond to the square pulse shown in (b) with

Himax) Jw = 0.06, while those in (d), (e) and (f) correspond to the envelope with sinusoidal ramp (defined in Note [41]) shown

in (c) for values of H;max)/w = 0.12, 0.33 and 0.67, respectively. The three different paths of (a) and (d)-(f) are due to the
exact (red, cycloidal-like motion), the RWA (green, no bullets) and effective Hamiltonians (blue with bullets, labeled “exact
RWA?”) [see Egs. and } The bullets indicate the stroboscopic times for top = 0, at which effective and exact paths
coincide approximately. In Sec. we discuss and resolve the problem that in (a) the endpoints of the effective and exact
paths disagree considerably.

with ¢ = fot TdrHy(7)/4. In this calculation we can ignore the time ordering operator T, because the on-
resonant RWA Hamiltonian commutes with itself at all times, [Hrwa (t), Hrwa (t')] =0 V ¢, (A =0).

The condition that this pulse result in a NOT gate in the RWA, Urwa (t¢,0) = 1cos(p) + ioy sin(yp) B Oz,
implies ¢ = /2, or

/tf dr Hy(1) = 2. (17)
0

Given that the chosen initial condition for all trajectories shown in Fig.[1]is the state vector that points to
the north pole of the Bloch sphere, for these m-pulses the RWA trajectories are half circles from the north
to the south pole. For the effective time evolution operator, which also follows from Eq. , we introduce
an extended notation,

Uto(ty,0) = Ter ol drtentrito), (18)

In the notation introduced in Eq. , the subscript tg determines the set of stroboscopic times at which
the effective and exact time evolutions agree, as given in Eq. (L1J).

For time-dependent envelopes, the effective Hamiltonian depends on the current time ¢ and gen-
erally does not commute with itself at different times, because of which it is less simple to evaluate the
time evolution operator Uy, (ts,0) than the time evolution operator given for the on-resonant RWA.
Nonetheless, as noted above, the Hamiltonian Heg(t;to) has only slow time dependence when compared
to the exact Hamiltonian H,ot(t), and thus, for many practical examples of amplitude functions H(t) we
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find that the numerical evaluation of the former Hamiltonian’s time evolution is less costly than that of the
latter. Note that, however, if the drive is not in resonance with the qubit (i.e., if A # 0), the applicable
RWA Hamiltonian is that given in Eq. @, which does not commute with itself at different times for time-
dependent H;(t). For this case, even when computing the RWA time evolution operator one needs to take
time ordering into account, thereby rendering the numerical evaluation of the time evolution in the regular
RWA no less demanding than that in our exact RWA.

A detailed comparison of the three different types of Bloch-sphere trajectories is given in Fig. a),
where the evolution’s beginning and end are shown close-up. Here the qubit is driven by a square pulse with
the constant envelope Hfmax) /w = 0.06 shown in Fig. b)‘ The exact path in Fig. a)7 shown in red, is
distinguished by its cycloidal-like motions known as Bloch-Siegert oscillations (we note that the phenomenon
of the nontrivial drive dynamics in relation to these high-frequency oscillations has been commented on in
Ref. [42]). This is contrasted by the smooth paths in the RWA (shown in green) and in our exact RWA
(blue). For this square pulse, the Hamiltonian in either of these approximations is time-independent, thus
greatly simplifying the computation of the time evolution. Using the on-resonant RWA Hamiltonian ,
the RWA time evolution operator reduces to Urwa(ts,0) = e"'HimaX)tf‘”/‘l, resulting in a uniform
circular rotation about the x-axis of the Bloch sphere. Similarly, the effective time evolution operator
reduces to Uy,—o(ts,0) = e Met(to=0ts  Since the Hamiltonian Heg(to = 0), given in Eq. , is a linear
combination of o, and o,, the effective trajectory corresponds to a uniform rotation about an axis in the
xz plane.

The largest deviation between the Hamiltonians in the RWA and the exact RWA is due to the Bloch-
Siegert shift, the leading correction in the effective Hamiltonian , which is truncated at seventh order in
1/w. As is evident from the upper left inset in Fig. a), for the sufficiently weak choice of H fmax) Jw = 0.06
the paths in these two approximations are nearly indistinguishable for the first few Bloch-Siegert oscillations.
In fact, the effect of the Bloch-Siegert shift becomes noticeable only towards the end of the pulse. The main
difference between the two is that only the effective path agrees with the exact path at regular points along
the entire trajectory. These points, indicated by bullets in Fig. (a), correspond to the stroboscopic set of
times for the choice of tg = 0.

Let us now formalize the stroboscopic time evolution that we use to define our effective Hamiltonian.
Motivated by the Bloch sphere trajectories shown in Fig. aL)7 in which the effective and exact paths agree
once per Bloch-Siegert oscillation, we define the stroboscopic time evolution based on the generic time
evolution operator with starting and final times ¢; =t € [0,t.) and t; = to + nt.,

. pto+nte . . pto+nte
Uy, (to + ntc, to) = Te~ihig " drHe(rito) L =i fig " drHeo(r) Vn e N. (19)

Note that for the effective time evolution operator we use the same notation as above in Eq. , where the
subscript tg indicates the set of points . This equality of the effective and exact stroboscopic time
evolution operators is a key idea in our work: in Sec. [2]it is the point of departure for the derivation of our
effective Hamiltonian defined as the series .

Various qubit trajectories corresponding to the envelope shown in Fig. )7 which can be viewed as

a smoothed square pulse, for different values of Hl(max) Jw are shown in Figs. [1(d)-(f). Since this envelope

Hi(t) varies in time, the angle traversed by the exact state vector on the Bloch sphere during a Bloch-Siegert
oscillation is not always the same for different segments of the trajectory. Also, as opposed to Fig. a),
here the effective qubit trajectories are not simple rotations about a fixed axis, but instead follow the exact
trajectory on moderately curved paths. As in Fig. (a), points of agreement are marked by bullets. For the
computation of these effective Bloch sphere trajectories we have used the time evolution operator with
the effective Hamiltonian , whose series terminates at second order in 1/w. For these example cases, we
find a noticeable discrepancy between effective and exact points of (intended) agreement only in Fig. f),
where H™™) /iy = 0.67. On the contrary, in all cases of Figs. (a) and (d)-(f) the RWA trajectory falls
short of constituting a systematic approximation to the exact trajectory.

It is the relative smoothness of the effective qubit trajectories shown in Fig. [I| that makes our effective
Hamiltonian theory an appealing tool for analyzing complex and perhaps unintuitive pulse shapes. In
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Figure 2: Various trajectories of a driven qubit initialized to |0). Similar to Fig. exact trajectories (shown in red) are
distinguished by their cycloidal-like motions, while effective trajectories—shown for different values of the gauge parameter
Bo as indicated—appear sniﬁcantly smoother. The trajectories shown on the left and right, respectively, correspond to the

envelopes shown in Figs. |I(b) and (c), each with Himax)/w = 0.5. The solid straight lines on the left, appearing at the
beginning and end of the paths, indicate the action of kick operators as explained in the text.

Ref. [34], the formalism developed in this work has been implemented and advanced in an attempt to
interpret a set of highly tortuous rotations resulting in simple single-qubit gates for singlet-triplet qubits

[33].

The above introduction of the exact rotating wave approximation is formulated under the assumption
that we are provided a smooth envelope Hi(t), as stated in our assumption (3)). Note that, for instance, the
Hamiltonian is well defined only if the derivatives H; and H; are non-singular functions. Next, after
introducing a gauge degree of freedom we consider the case of the envelope not being completely smoothEl

1.4. Gauge Freedom and Kick Operators

As described above, the set of stroboscopically-defined times at which the effective and exact qubit
trajectories agree, is {to, to + tc, to + 2t., ...} with the period of the drive t. = w/w [cf. Eq. } The choice
of the offset time ty € [0,t.), a parameter that our effective Hamiltonian Heg(¢;%0) depends on, leads us to
introduce a dimensionless gauge parameter,

[30 = 2wt0, ﬂo S [0,27‘(’). (20)

For the two effective Hamiltonians given in Egs. and we have chosen the specific value for the
parameter to = 0, thereby fixing the value of 8y = 0. The exemplary effective Hamiltonians in [Appendix A|
are given for a variable gauge parameter (.

The reason f§y is called a gauge parameter is that changing its value leaves the start and end points of
the effective qubit trajectory invariant. Figure [2| portrays this fact by examples of effective Bloch sphere
trajectories, or paths, similar to those shown in Fig. [I} for which ¢ty = 0 corresponding to 5y = 0, but for
various gauge parameters By. As indicated in the figure, the shown effective paths are taken for the cases

2In the present work, the attribute “completely smooth” is used to indicate that the function is a member of the C°° class,
i.e., its derivatives exist to all orders.



Bo =0, w/4, 7/2 and 37 /4. Again, points of agreement between the effective and exact paths are indicated
by bullets. In the Bloch sphere plot on the right of Fig. [2| which corresponds to the envelope shown in
Fig. c), all paths agree at the beginning, and approximately agree at the end of the pulse.

To get a better intuition for the time evolution due to our effective Hamiltonian, we refer the interested
reader to an animation of a set of Bloch sphere trajectoriesﬂ similar to those shown on the right of Fig.
but including the RWA trajectory similar to the Bloch sphere plots shown in Fig. [l The piecewise-smooth
envelope used for this animation is of the same functional form as that in Fig. c)7 i.e. it is given by the
function given in Note [41] for the case of a = 0.3, and its maximal value is H\™* /w = 3/14 ~ 0.21. The
animation reveals the relative evenness of the effective motion when compared to the exact trajectory, and
emphasizes that all effective trajectories (for various values of By € [0,7]) share the same start and end
points.

Realistic envelopes are usually not completely smooth. Consider, for example, the two envelopes shown in
Figs.[I{b) and (c). At the beginning and end of the square pulse [see Fig. [I{b)] the envelope is discontinuous,
meaning that its first derivative H; is proportional to a d-function. Similarly, the envelope with sinusoidal
ramping shown in Fig. (c)7 which is defined using piecewise-analytic functions, features several divergences
at its third derivative. As a result, for both of these cases our effective Hamiltonians are not well defined
at certain points in time. This is a consequence of the assumption being violated if a Kth derivative,

OR

Hi (tq), diverges at some time ¢4 in the form of a J-function [which corresponds to a discontinuity of the
(nE-1

K — 1st derivative H; (t4)]. This problem is resolved in Sec. |3 where we derive kick operators to augment

our formalism to deal with the following situation: for all times t either Eq. is fulfilled, or there exists an

upper bound K € Ng such that for certain times ¢ = t4, separated by at least the drive period t., we have

()F OF
|H (tg)] S 1/ VE < K, | Hy ()] o< 8(t — tq) + nonsing(t) Vit € (tq — te,tq + te). (21)

Here, nonsing(t) contains non-singular contributions assumed to satisfy |nonsing(t)| < 1/w®+!. This gen-
eralized assumption thus allows for envelopes like those shown in Figs. [[{b) and (c), whose derivatives
violate Eq. in the form of a d-function. Section [3| determines kick operators, which cause instantaneous
displacements of the effective trajectories at the times t¢4.

The effect of kick operators is illustrated by the Bloch-sphere plot on the left of Fig. [2| on the basis of
the square pulse shown in Fig. b). The solid straight lines indicate instantaneous displacements in the
effective qubit trajectories, caused by kick operators, at their beginning (¢4 = 0) and end (tq = tgate), Which
is where the first derivative of the square pulse envelope is proportional to a J-function. As shown in the
figure, these displacements ensure the agreement of the exact trajectory with all effective trajectories (for
different gauge parameters (), both at the beginning and the end of the pulse.

WK

Under certain circumstances, the divergence of a derivative Hj (t4) in form of a d-function does not
result in an instantaneous displacement. As discussed in Sec. this is the case whenever the time of
the discontinuity, t4, coincides with a point of stroboscopic agreement, ty + nt. where tg = By/2w and
n € Ng. For example, one can see no such displacement at the beginning of the Sy = 0 trajectory shown
on the left of Fig. [} this is because the first derivative of the square pulse diverges at time ¢4 = 0, which
coincides with the first point of agreement at ¢y = 0. Similarly, in the Sy = 0 trajectory shown in Fig. a),
which also corresponds to the square pulse, there is no displacement at ¢ = 0. There is, however, a
displacement [not shown in Fig. a)} at the end of that trajectory, which makes sure that the effective and
exact trajectories agree at the very end of the pulse. Finally, we note that the effective trajectories shown on
the right of Fig. [2] also feature such displacements on account of the envelope with sinusoidal ramp having
a discontinuous second derivative. However, for the choice of drive parameters corresponding to this set of
effective trajectories these displacements are too small to be noticeable in the shown Bloch sphere plot.

Shttps://github.com/zeuch/exactRWA/tree/master/videos
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2. Derivation of Effective Hamiltonian

In this section we derive a recurrence relation for calculating our effective Hamiltonian, Heg(t;to). As
described in the Introduction, the effective Hamiltonian changes slower in time than the exact Hamiltonian,
Hyot(t), and generates a time evolution that agrees with the exact evolution stroboscopically. For this
derivation we assume that the amplitude function, or envelope, of the drive is completely smooth and
changes slowly in time consistent with Eq. .

We first show in Sec. how the condition of stroboscopic agreement can be formalized naturally using
the Magnus expansion. By doing this we find that the effective Hamiltonian is determined by appropriately
integrating out the fast oscillations of the drive, which are on the time scale of 1/w. However, the Magnus
expansion by itself does not constitute an algebraically useful method as long as the amplitude function of
the drive, H;(t), is unspecified. Section then combines the Magnus expansion with a Taylor expansion
of the generic envelope Hi(t), a crucial step that allows us to integrate out the fast time dependence of
the exact Hamiltonian H,.(¢) in a systematic fashion. We refer to this combined method as the Magnus-
Taylor expansion. In Sec. we apply this Magnus-Taylor expansion to the driven-qubit problem, thereby
rendering the condition of stroboscopic agreement algebraically tractable. We then solve this condition
asymptotically to arrive at the central result of our work: a recurrence relation for computing the effective
Hamiltonian series .

Subsequently, in Sec. we exemplify the usage of our central recurrence relation by computing an
effective Hamiltonian up to first order in 1/w. Sectioncloses our treatment of smooth amplitude functions
by deriving a simplified computation method for determining the effective Hamiltonian of the form for
the special case of a constant drive envelope.

2.1. Applying the Magnus Expansion

Our derivation of the effective Hamiltonian employs the Magnus expansion [9HIT], which is a variant
of time-dependent perturbation theory carried out at the level of the Hamiltonian rather than the wave
function. A central characteristic of this method is that, independent of the order at which this expansion
series is truncated, its implementation inherently conserves unitarity of the time evolution.

The basic idea behind this expansion is to write the time evolution operator as a true exponential function
of a Magnus expansion H, which is calculated perturbatively. Assuming a generic Hamiltonian #(t), we
rewrite the time evolution operator using the Magnus expansion as follows,

U(tf,tl) — Tefi jtlf drH(T) — e—iﬁ(tf_ti). (22)

A straightforward way to obtain a series representation of 7 is to expand the exponential functions on both
sides of Eq. , apply the time ordering operator and equate terms of equal power in A = —i [11]. We note
that while the Magnus expansion depends on the initial and final times ¢; and ¢y, respectively, we avoid
uncomfortable overloading in the notation introduced in Eq. by suppressing this dependence.

We focus on the stroboscopic time evolution for the set of times {to,to + t., ...} [cf. Eq. (11))] with the
period ¢, = m/w of the drive in the rotating frame [cf. Eq. ()] and a time offset ¢y € [0,¢.). The stroboscopic
time evolution operator similar to that in Eq. can be written via the Magnus expansion as

U, (to + nte, to) = e~ Hnte, (23)
for positive integers n. The Magnus expansion H can be viewed as the result of computing a “sophisticated

average” over the interval [tg,to + nt.), which we call a Magnus interval. Written explicitly for such a
Magnus interval, the standard procedure for obtaining this Magnus expansion is to write H as a series

A=Y H". (24)
k=0
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The first three of the terms H(*), which below we refer to as Magnus integrals, are given by

—(0) B 1 tot+ntc

HY = - /t drH(7), (25)
1 i tot+nte 7’

R /t ar' /t dr[H(~), H(r)), (26)
9 to+nt. T !

A = g [ e [ [ ar{ e o) e+ e e el e

Magnus integrals of higher order may be determined recursively (see, e.g., Refs. [28,[43]) or as outlined below
Eq. .

Below we begin our derivation by re-expressing the condition of stroboscopic time evolution [cf. Eq. ]
using the Magnus expansion. Figure |3|illustrates the central ideas that precipitate our line of arguments
leading to a sound condition on our effective Hamiltonian, which can be solved asymptotically. A generic
pulse envelope H;(t) for a m-pulse, or a single-qubit NOT gate, in the rotating wave approximation is shown
in Fig. [B[a). As stated in Eq. (I7)), for such a pulse the area under the H;(t) function is 27. Figure [3[a)
makes it evident that for relatively weak fields satisfying H 1(max) Jw < 0.01 the gate duration of the m-pulse,
tgate, Will cover many Magnus intervals of duration ¢, = 7/w. This suggests that for such weak fields the
Magnus series of the exact Hamiltonian H,. is likely to converge quickly over a Magnus interval of
duration t.. Based on this intuition, in the present section we seek a condition for the effective Hamiltonian
formulated using the Magnus expansion for precisely one such interval of duration ¢..

The basic condition of stroboscopic time evolution is expressed in Eq. by the equality of the effective
and exact time evolution operators at the stroboscopic times . We reformulate this condition using
the Magnus expansion by, for convenience in the following analysis, shifting the final time by one period ¢,
with respect to the time evolution operator , ty = to+ (n+ 1)t

Uy, (to + (n + 1)te, tg) = e~ Her(ntte L o=iHor(nt1)te Vn € No. (28)

To be clear, here each Magnus expansion is to be evaluated on the Magnus interval [tg, to + (n 4 1)t.). This
stroboscopic time evolution over a duration (n + 1)t. is illustrated by the close-up view of the Bloch sphere
plot shown on the left-hand side of Fig. b) for the envelope shown in Fig. a).

Using the group property of the time evolution operator U from initial time ¢ to final time to+ (n+1)t,,

Ulto + (n+ Dte,to) = H Uto + (G + Dte.to +jt)  ¥n e Ny, (29)

Jj=0

where the symbol JF signifies that the product is ordered from right to left with increasing j, we rewrite
the conditions as the set of conditions

Uy, (to + (n + Do, to + nte) = e Herte L gmifnte  yp e N, (30)

The transition from the time evolution operator to this stepwise time evolution is also illustrated in
Fig. b). It is thus evident that the effective Hamiltonian is fundamentally defined via the Magnus expansion
for a stroboscopic evolution over each individual Magnus interval [tg + nt., to + (n + 1)t.),

— [

Hegr = Hrots [all Magnus intervals [to + nte, to + (n + 1)t.)]. (31)

We now discuss how the conditions , which differ from one another through the dependence on the
parameter n counting the Magnus interval, can be effectively reduced to a simpler set of conditions, all of
which (i) are of the same form, and (ii) require taking the Magnus average over one and the same Magnus
interval. We choose this particular interval, henceforth called the fundamental Magnus interval, to be

[to, to + tc) (fundamental Magnus interval). (32)
12
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Figure 3: Graphical illustrations of several concepts used in our derivation. (a) Generic drive envelope Hi(t), where the time
axis is divided into Magnus intervals of duration ¢ = m/w. As discussed in the text, this time ¢ is short compared to the gate

duration tgate for weak pulses with H%max)/w < 0.01. In (b) the stroboscopic time evolution for a generic value of the gauge
parameter (o is shown in two equivalent representations, which can be related to one another using the property of the
time evolution operator. This property allows us to simplify the condition of the effective Hamiltonian to the condition
(35), which is based on the Magnus average on the fundamental Magnus interval .

Let us discuss how this reduction comes about. Notice that the first three terms of each Magnus expansion
in Eq. can be obtained from Egs. — by replacing all lower integral bounds in these equations
according to the rule tg — to 4+ nt., and further replacing each outermost upper integral bound according to
to+nt. — to+(n+1)t.. Each such term can then be reduced to that of n = 0, corresponding to the Magnus
expansion over the fundamental Magnus interval, by shifting the integration variables and introducing a
relocated envelope H; as follows,

T—=T=T1~—nl,, Hy(7) := H1(T + ntc) = Hi(7). (33)

We exemplify this reduction by considering the lowest-order Magnus term ﬁ(o), given in Eq. , for
the rotating-frame Hamiltonian (6) for the special case of A =0 and ¢ = 0, i.e., Hyot(t) = (Hi(t)/4) (0, +
cos(2wt)o, — sin(2wt)o,). Examining only the terms proportional to o, the integral of interest can be
straightforwardly manipulated using the rules (33) as follows,

| et g 1ot Hy (7 +nt,
il dr 1(7) (14 cos(2wr))o, = — dfl(Ti—i_n)(l + cos(2w(T + nt.)))oy
tc to+nte 4 tc to 4
1 tot+tc g +
- dF 1(7) (14 cos(2wT))oy. (34)
tC to 4

The transformation of the terms proportional to o, can be done in parallel. We have thus transformed the
lowest-order Magnus integral over a generic Magnus interval to an equivalent integral over the fundamental
Magnus interval (32)). Similar transformations can be used to reduce other terms of the Magnus series, such
as those in Egs. and , to the same fundamental interval.

Above, starting from Eq. we have transformed the condition on equal time evolution at the time
points to the infinite set of conditions . These conditions differ by one another only by the Magnus

13



interval that the Magnus expansion is based on. Given that, as we have just discussed, each Magnus
expansion can be reduced to one and the same Magnus interval, we focus below on the single condition

Hot = Hrot [fundamental Magnus interval [to, o + tc)]. (35)

This condition is the key property of the effective Hamiltonian that enables us to derive the desired recurrence
relation in Sec. 2.3l

2.2. Magnus-Taylor Expansion

Without specification of the amplitude function Hi(t), closed-form expressions of the Magnus expansions
that appear in the previous section cannot be obtained. For example, consider the Magnus expansion Hot
in Eq. . Focusing on the rotating-frame Hamiltonian @ and the lowest-order Magnus term [with
n = 1 since Eq. is constrained to the fundamental Magnus interval ], the integral in question,

. 1 to+te 1 to+tc H

’H](rgz = —/ dTHrot(T) = —/ dr 1(7) (02 + cos(2wT)o, — sin(2wT)oy), (36)
te Jt, te Ju, 4

cannot be simplified any further. Note that this integral can, however, be solved as a series expansion in

1/w upon replacing H;(7) by its Taylor series with respect to a reference time ¢,

Hy(r) = Hy(t) + Fa(0)(r — ) + S F (0 — 7 + .., (37)

where we take this reference time t € [to,to + ) so that |7 —t| ~ t. < 1/w. Given our assumption of a
slowly varying envelope Hi(t) as expressed by Eq. , this Taylor series converges quickly for weak fields
|H1(t)|/w < 0.01 since these, referring to Fig. [3[a), correspond to the case of Magnus intervals that are short
compared to the total duration of the pulse.

Suppose we wanted to determine the zeroth-order Magnus term for the effective Hamiltonian ,
which depends not only on the envelope H; (t) but also on its first and second derivatives, Hy (¢) and Hi(¢). In
this case, we would encounter the integral upon replacing Hyot (7) = Heg(7). To solve such an integral
explicitly, our approach would then involve introducing three separate Taylor series similar to Eq. (37))
with one and the same reference time ¢ for all three functions Hy(7), Hy(7) and Hi (7). This perturbative
procedure may also be used for all higher-order Magnus terms of the series , and it is this very strategy
that constitutes the Magnus-Taylor expansion formalized below.

We note that the above procedure of integrating out the quickly-oscillating terms of the Hamiltonian
is reminiscent of the two-time Floquet formalism [I8H23] in which a similar separation between slow and
fast temporal dependencies takes place. Furthermore, the most recent of these studies, Ref. [23], presents
effective Hamiltonians that similarly depend on the first derivative of slowly varying parameters of the
Hamiltonian.

Now consider a generic Hamiltonian A that may have both explicit and implicit dependence on time t,
for which the implicit time dependence is mediated by parameters X (t) = {X1(t), Xa(t),...}, i.e., H(t) =
H(t,X(t)). For instance, the rotating-frame Hamiltonian H,ot(t) = Hyot (¢, {H1(t)}) given in Eq. (4)) has one
such time-dependent parameter, such that X(¢) = {H;(¢)}. In contrast, the example effective Hamiltonian
, while not explicitly time-dependent, depends on three parameters X(t) = {Hy(t), Hy(t), Hi (1)}, i.e.,
He(t) = Her({H1(t), H1(t), H(t)}). BEach time-dependent parameter X; hence appearing in the Magnus
integrals, such as those given in Egs. —, is a function of an integration variable, denoted 7 below.
We denote the Taylor series of such a function X;(7) with respect to a reference time ¢ by

T[Xi(7), 1] =) Xi (t) (r —t)k. (38)

We further denote the Taylor series of the vector X (7) with respect to the same reference time ¢ by
T[X(T)vt] = {T[X1(7)7t}7T[X2(T)7tL"'}' (39)
14



We now define the Magnus-Taylor expansion for a Hamiltonian H (¢, X(¢)) as a regular Magnus expansion
with the added feature that every function X;(7) appearing in the integrals of this expansion is replaced by
a Taylor series. Let M[H,t;to] denote this Magnus-Taylor expansion of a Hamiltonian H, a reference time
t and the fundamental Magnus interval [to,to + t.) [cf. Eq. ] The Magnus-Taylor expansion is then
defined analogously to the Magnus series forn=1,

MM, tito] = Y my[H, t; o). (40)
k=0

Here the term my, is the kth-order Magnus term in which each parameter X;(7), which enters the Magnus
integrals through the Hamiltonian H (7, X (7)), is replaced by its Taylor series T[X;(7), t| with reference time
t as given in Eq. . For example, the first two terms in the sum of Eq. are given by, referring to

Eqgs. and setting n = 1,

tot+tc
mofitite] = 3 [ drH(nTX(7).8), (41)
i 0t0+tc T’
R A / dr[H(r', TX ('), 1)), H(r, TX(r), 1])]. (42)

As noted below Eq. , for reasons of convergence we assume that the reference time ¢ for this Magnus-
Taylor expansion lies within the fundamental Magnus interval, or ¢ € [tg, to + t¢).

The Magnus-Taylor expansion can be used to compute the time evolution of a quantum system in the
same way as the regular Magnus expansion. For example, the time evolution operator across the fundamental
Magnus interval can be expressed as

Ulto + te, to) = efiM[?-L,t;to}tc7 (43)

which is analogous to the expression using the Magnus expansion in Eq. for the case of n = 1. In Sec.
we use a Magnus-Taylor expansion in a similar manner as in Eq. to determine the time evolution over
a partial Magnus interval in when deriving the kick operators for non-smooth drive envelopes.

Above we have reduced the set of conditions for the effective Hamiltonian Heg, which features
Magnus expansions H on Magnus intervals [tg + nt.,to + (n + 1)t.) determined by n and tg, to the single
condition featuring the Magnus expansion on the fundamental Magnus interval [to,to + t.). In our
derivation in Sec. we replace each Magnus expansion in Eq. by the more tractable Magnus-Taylor
expansion M[H, t; tg], which requires the specification of an additional parameter, the reference time ¢. In
the same way as ty is associated with the effective time evolution via the gauge parameter, Sy = 2wt,
we associate the reference time t of the Magnus-Taylor expansion with the current time t of the effective
Hamiltonian Heg(; to).

To give an example, let us calculate the Magnus-Taylor expansion of the Hamiltonian @ up to first
order in 1/w. For this order, the only relevant terms in the Magnus-Taylor series are mp and my,

M[Hot, t; to] = mo[Hrot, £ to] + mi[Hrot, t; o] + O(1/w?). (44)

For the first term we truncate the Taylor series at first order,

1 [totte © <H1(t) N Hl(t)

mo [Hrotu t; tO]

(r—t)+O0(r — t)2)> (03 + cos(2wT)o, — sin(2wT)oy)

tc to 4 4
= O D (20t — 1)+ sin(2ute))o, + con(2uto),) + O(1/?)
2 Hpwa (t) + Hglcgt) ((w + Bo — B+ sin Bo) o + cos Booy) + O(1/w?). (45)
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In the last line we took note that in the Magnus-Taylor expansion the lowest order in 1/w results in the
Hamiltonian in the rotating wave approximation (RWA), given by Eq. . We also replaced ty using
Bo = 2wtq as defined in Eq. (20)), and introduced the dimensionless quantity

B = 2wt (46)

in analogy to fy. This, together with using ¢. = 7 /w, serves the purpose of consistently separating different
orders of 1/w within the expansion.

To compute the second term of the Magnus-Taylor expansion, note that for H,.; as given in Eq. (@,
the commutator [H,ot(7), Hrot(7')] is proportional to o,. Here, we truncate the Taylor series already
at zeroth order,

_; [totte T
my|[Hrot, t;t0] = 5, |, dr’/t dTZ(Hl(t) + O(7" =) (Hy(t) + O(1 — 1)) cos(wT")
x cos(wT) sin(w(r — 7)) [04, 0y

1 to+tc H, (t)2

= 4 ; dr’ T cos(wr’)(cos(wr’) — cos(2wr’))os + O(1/w?)
= ]22(32 (1 — 2cos(2wt))o, + O(1/w?)
2

where, as in Eq. , we express the result in terms of Sy.
As in the above example, in the remainder of this work we express all temporal parameters that have an
impact on the dimension of the Magnus-Taylor expansion using dimensionless quantities. As a result, the

only dimensionful quantities in our expressions, besides the drive frequency w, are the detuning, A, the field
k

)
strength H;(t) and its time derivatives Hy (¢). Hence, in the present study the coefficients of the operators
0z, 0y and o, in a Magnus-Taylor term of order 1 JwP or simply of order k, are of the form

. . () Ng41
Ao M TS (Hl)

o 7 (48)
which is given up to a dimensionless factor. Note that the Magnus-Taylor expansion yields an operator that
has the same units as a Hamiltonian, because of which the exponents n; with ¢ =0,1,...,k+1 can be found
to fulfill the requirement ng+ Zfill jn; = k+1. By construction, for any Magnus-Taylor term that appears
in this study the only dimensionful quantity in the denominator of the coefficient is w, corresponding
to non-negative integers n;. Examples of such coefficients for terms of orders £ = 0 or 1 can be found above
in Eqgs. and . In these calculations we computed only the first two terms mgy and m; of the series
, and we kept at most the first two terms in the Taylor expansion .

In practice, these series may always be truncated at an appropriate order. For a Magnus-Taylor term of
order k with coefficient , the largest possible exponent max(ng,n1,...) is directly related to the highest
depth of the commutator of the term my, in Eq. [for m( and m;, for instance, see Egs. and ], and
its value coincides with the highest required term in the Magnus-Taylor series (40). Similarly, the highest
. For lowest order in
equal to A or Hy,
i.e., the only nonzero exponents are ng = 1 or ny = 1. This implies that in both Egs. (38) and only the
k = 0 terms need to be kept. For the next order of k = 1, or 1/w, the highest required terms in the same
two equations are those with k = 1, since here the possible coefficients are given by AH; /w, H? /w and
H, Jw. The same dimensional argument can be applied to arbitrary orders, with the corresponding result
that for a Magnus-Taylor expansion of order k& both Egs. and can be truncated at order k.
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In this work, the purpose of the Magnus-Taylor expansion is twofold. First, in the following Sec.
we use this expansion directly to derive our effective Hamiltonian. Second, in Sec. [3| we use it to compute
various time evolution operators similar to that in Eq. . This allows us to derive kick operators, which
extend our effective-Hamiltonian theory for amplitude functions that are not entirely smooth.

2.3. Recurrence Relation for Effective Hamiltonian

We are now in a position to derive an explicit condition that enables us to find the recurrence relation
for constructing our effective Hamiltonian . We start by rewriting the previous condition using the
Magnus-Taylor expansion ,

M[Heffa t; tO] = M[Hrotv t; tO] . (49)

As discussed in the previous section, the reference time ¢ of this Magnus-Taylor expansion corresponds to
the current time ¢ of the effective Hamiltonian, Heq(t; o), and we assume t € [tg, tg+t.). The goal expressed
by Eq. is to obtain an effective Hamiltonian whose Magnus-Taylor expansion is equal to that of the
rotating-frame Hamiltonian.

Denoting the kth coefficient of a power series, p(z) = > po prx®, by

Cilp(2), z] = pr, (50)
Eq. may be separated into multiple equations,
Ch [M[Heﬁ‘, t; to], 1/w] =C% [M[Hrot, t; to], 1/w] Vk € Ng. (51)

To ensure consistent counting of dimensions in 1/w before selecting the coefficients Cj, we follow the conven-
tions for replacing parameters with time-like dimension used in the example calculations and . To
be specific, we replace all instances of ¢, and t following the rules t. — 7/w and tg — Bo/(2w) [cf. Egs.
and ] Furthermore, we replace those variables ¢ that have an impact on the dimensionality of the
Magnus-Taylor expansion following the rule ¢ — 3/(2w) [cf. Eq. (@6)]. The arguments of unspecified func-
tions such as Hi (t) or Hy(t), which have no impact on the 1/w-dimensionality of the coefficients in Eq. ,
are exempt from this replacement rule.
To find the desired recurrence relation, first introduce a Hamiltonian decomposition,

N

U (t10) = 32 MET0), (52)

wk
k=0

similar to that given in the effective Hamiltonian series (14)) except that here the summation ends at finite
order N. Our derivation of the time-dependent operators hy(t;¢g) can be viewed as constructing the effective
(N) «
eff

Hamiltonians H from the bottom up,” that is, we start with NV = 0 and then inductively increment

N — N + 1 via a recursive procedure that determines hy 1 as a function of ’Hég).

We begin our derivation by determining the zeroth-order effective Hamiltonian, Hégf) = hg. To do this,
we first evaluate the Magnus-Taylor expansion on the left-hand side (LHS) of Eq. for the lowest order of
k = 0. Using the notation introduced in Sec. let us express the corresponding effective Hamiltonian
as Hgg:o) (t) = ’Hg(f)f) (X(t)) = ho(X(t)). This (i) highlights its possible dependence on a set of parameters
X(t), and (ii) conforms with our premise (2] stating that the effective Hamiltonian does not explicitly depend
on time. Furthermore, from our discussion at the end of Sec. [below Eq. ] we take that for this order
of k = 0 we can truncate both the Magnus-Taylor series as given in Eq. and the associated Taylor series
at lowest order. We thus find

MK tito] = molho.t;to] + O(1/w)
o tl t0+tcdrh0(T[X(7)7t])—i—(’)(l/w)
to+te
_ tl /t drho(t; to) + O(1/w) (53)
= hol(t;to) + O(1/w). (54)

17



In Eq. the integral has turned trivial, because the integrand has lost all dependence on the integration
variable 7. Since this is a crucial step, we reiterate that this loss of 7-dependence of the integrand comes
about since the effective Hamiltonian’s time dependence comes solely through the parameters X(7), whose
Taylor expansion has been truncated at lowest order, i.e., X(7) ~ X(¢). Equation then implies
that the zeroth-order coefficient

CO[M[HS;f),t;tOL 1/"‘)] = hO(t;tO)v (55)

indeed yields the lowest-order Hamiltonian term we seek at this step of the derivation.

Now recall that in Eq. we found that the lowest-order Magnus-Taylor expansion for the special-case
Hamiltonian @ is equal to the RWA Hamiltonian. This calculation can be generalized straightforwardly to
yield the same result for the generic Hamiltonian , which implies that the RHS of Eq. is

Co [M[Hroh t; tO]? 1/(“}] = Hrwa (t) (56)
Combining Eq. for k = 0 with and we conclude
H (15 10) = ho(ts o) = Hrwa (1), (57)

We have thus identified the lowest-order effective Hamiltonian with the RWA Hamiltonian @D

Next, let us discuss the recursion step N — N + 1. First note that because the effective Hamiltonian
has units of energy, or w (since i = 1), each coefficient hj, has units of w**'. We now use this fact to relate
the Magnus-Taylor expansions of two successive effective Hamiltonians Hggﬂ) and Hég) to one another.
Starting with the series and separating out the mg term,

M[’Hégﬂ), t;to) 2 mg [Hgﬁ) + hN+1/OJN+1, t;to] + Z my, [’Hgg) + hN+1/(A}N+17 t; to)
k=1
= mo[HY, tito] + molhna1 /wN T trto] + > mi [, t5t0] + O(1 /N F2)
k=1
= M[Hgg)7t;t0] +m0[hN+1/wN+1,t;t0] + O(l/wN+2). (58)

The step from the first to the second line is nontrivial, and can be explained as follows. First, the zeroth-
order term mg[H,t; o], which is given in Eq. , is linear in its first argument, resulting in the sum of the
terms mg [’Hgg), t:to] and mo[hyy1/wN L t;tg]. Second, when ignoring hy 1 /wN*! inside my, [’Hgf_\flﬂ), t; to)
with k > 1 the only terms we do not keep explicitly are due to the commutator of Hijg) and hy41, or those
due to the commutator of hy1 with itself (at different times). Consider, for example, the commutator of
ho and hp41, which is of lowest order of the terms neglected in this step. Recalling that, as noted directly
above Eq. , hi has units of w**!, this commutator has units of w™*3, and since the Magnus-Taylor
expansion itself has units of w, this lowest-order correction term must be proportional to 1/w™¥*2. Finally,
all neglected terms are collected in O(1/w™*2) since the one just discussed is that of lowest order.

We now assume that for a given N € Ny we have found the effective Hamiltonian ’Hig), which satisfies
the requirements for all £ < N. It turns out that the only nontrivial requirement for the next
order is that for K = N + 1, because the requirements for all k¥ < N are automatically fulfilled by Higﬂ).
To see why this is the case, we use the relation established above to simplify the LHS of Eq. for

the Hamiltonian Hégﬂ) and kK < N,

CuMHE tto], /0] B CuMHD 5 t0] + molhy 4, 5 o] fwV 1, 1]
= CuMHY 1 to], 1/w]. (59)

This result implies that the LHS of Eq. for the Hamiltonian ’Hégﬂ) and k£ < N can be reduced to that
of ’H,ég), which at this point, as noted above, is assumed to fulfill the requirement for all K < N.
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Moving on to the next order coefficient Cy with £ = N + 1, we again use Eq. to simplify the LHS
of the requirement ,

58
On1 MG, 5 10], 1/w] = Onr IMIHE, 85 to] + molhi 1 /0N 8 1), 1/w]
= OnaaMHY, 5 t0), 1/w] + O [molhy1 /o™, £ 0], 1 /]
= Ona MY 510, 1/w] + by (£ o). (60)

When going from the first to the second line, we have used the linearity of the coefficient operator Cj. In the
step leading to the third line, we have used the fact that the Taylor series is to be truncated at zeroth
order since any higher-order terms are at an increased order in 1/w. Similar to the evaluation in Eq. ,
this truncation has the effect of hy 41 losing all dependence on the integration variable, thus rendering the
evaluation of the Magnus-Taylor term my trivial.

Finally, combining the result of Eq. with the requirement for kK = N + 1, and solving for the
new coefficient hy 41 we obtain our central recurrence relation

havi(tito) = Cnyr [M[Haor, £ to] — MIHY) #:t0],1 /]

N

h(t;t
£ hnti(tito) = Cnga [M[Hrot,t;to} -M [Z k(wko),t;to] 71/4 : (61)
k=0

The effective Hamiltonian is defined by this equation together with the starting point, hg = Hrwa, as
given in Eq. .

The recursive procedure for calculating the effective Hamiltonian Hg) for some order N can thus be
summarized as follows. Beginning from the lowest-order Hamiltonian , ’Hé? (t;to) = Hrwa (t), all higher
terms hj with £ > 1 are then obtained via repeated evaluation of the recurrence relation . We reiterate
that, as stated below Eq. , when deploying this procedure it is essential that after computing each
Magnus-Taylor expansion in Eq. and before taking the coefficient Cn 11, all temporal parameters are
replaced by their equivalent dimensionless parameters, unless they are arguments of the unknown envelope
H, (t) or its derivatives [see also our example calculation of the Magnus-Taylor expansion given above in
Egs. —]. In the following section we use this procedure to calculate a first-order effective Hamiltonian.

2.4. Ezample Calculation: Effective Hamiltonian of Order 1/w
Let us now use our recursion procedure to calculate the effective Hamiltonian up to first order in 1/w,
Hgf). As before in the example calculation of the Magnus-Taylor expansion in Sec. we once again
concentrate on the simple rotating-frame Hamiltonian @, Mot (t) = (H1(t)/4)(0z+cos(2wt)o,—sin(2wt)oy).
We start the construction of this effective Hamiltonian for N = 1 with the lowest order which, as
stated in Eq. 7 is the Hamiltonian in the rotating wave approximation (RWA),

= oy Hq(t
HE =V (tto) = hol(tito) = Hrwa (t) %07:- (62)
For the next order,
HE TV (tt0) = ho(tsto) + ha(tsto) w, (63)

we determine the Hamiltonian coefficient h; using the recurrence relation for N =0,
hi(t;to) = Ci[M[Hrot,t;to] — M[Hrwa (t),t; 0], 1/w], (64)

where we have already used Hég:o) = Hrwa. Combining the first-order Magnus-Taylor expansion of H,ot,
calculated in Eqs. and , results in

Hy(t)?
32

H(t)

C1[M[Hyot, i 0], 1/w] = 8

(1 —=2cosfBy)o. +

((m + Bo — B +sin By)o, + cos Booy). (65)
19



The Magnus-Taylor expansion of Hrwa up to order 1/w, similar to the exemplary calculation of the
Magnus-Taylor expansion up to the same order of the Hamiltonian H,ot in Eq. (44]), consists of only the
first two terms of the series (40)),

M[HRWA (t), t; to] = Ingp [HRWA (t), t; to} “+ my [HRWA (t), t; to] + (’)(l/wQ). (66)

As discussed at the end of Sec. for the first-order Magnus-Taylor expansion the Taylor series of
X, = H; can be truncated at k = 1. Using the definition of mg as given by Eq. (41]), we thus obtain

tot+te g
mo[Hrwa (t), t;to] = tl t dr <H14(t) i H14(t) (r—t)+O((r — t)2)> Ou
= B0, O ¢ g Byt 002 (67)

The next term my, given by Eq. , vanishes since the zeroth-order effective Hamiltonian is propor-
tional to o, at all times, and therefore commutes with itself at all times,

my [Hrwa (t), t;to] = 0. (68)

Combining Egs. through 7 we find
hy(t;t0) = H13(2t)2 (1 —2cos By)o, + HIS(t)(Sin Booz + cos Booy). (69)
Together with hgy given in Eq. , we conclude that the first-order effective Hamiltonian is given by
HL (t:9) = Hz(t) o, + 122(22 (1= 2cos fo)o + ﬁgg) (sin Boos + c0 foary). (70)

As noted in the Introduction, generic effective Hamiltonians up to second order in 1/w can be found in
Append A

2.5. Simplified Computation Method for Time-Independent Envelope

For the case of a constant envelope H;(t) = Hj, the above procedure for calculating the effective
Hamiltonian turns relatively simple. In fact, we now show that for this special case the effective Hamiltonian
can be computed via a regular Magnus expansion of the rotating-frame Hamiltonian ,

Heff(to) = ﬂ1rota (Hl(t) = Hl)' (71)

Recall that in the notation for the Magnus expansion, introduced in Sec. [see Egs. (22)-([27)], the
dependence on ty and n is suppressed. The Magnus expansion in Eq. is to be taken on the fundamental
Magnus interval [tg, to+t.), so that the first three terms of the Magnus series are given by Eqs. —
for the case of n = 1.

It is not difficult to derive Eq. given our central recurrence formula derived in Sec. This is
because for a constant envelope several simplifications arise. First recall that for this case, as discussed in
Sec. the effective Hamiltonian introduced as the series representation itself is time independent.
Terminating this series at order N similar to the generic effective Hamiltonian series , we have

N

HN (1) = 3 halto) (1/w)". (72)

k=0

Second, the Magnus-Taylor expansion reduces to a regular Magnus expansion for the Magnus
interval [to,to + t.), because the Taylor series for the only occurring parameter X;(7) = Hy1(7) = H;
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terminates at lowest order. As a consequence, the recurrence relation (61]) for the effective Hamiltonian
simplifies to

hnt1(to) = Ong1 [Hrot — ﬁfff}[), 1/4 ) (73)

where we have replaced both Magnus-Taylor expansions in Eq. by regular Magnus expansions, and
further replaced hyy1(t;to) with hni1(to).

Now note that since the effective Hamiltonian Heg(to) is independent of time ¢, it commutes with itself
at arbitrary times. For this reason all terms but that of lowest order in the Magnus series vanish, i.e.,
Het = Y pep ﬁiﬁ) = ﬂ,(;f)f). The lack of dependence on time t of Heg further implies that this lowest-order
term, which is a straightforward average over the fundamental Magnus interval as given in Eq. for

n = 1, is simplified trivially as ﬂ((e(f)f) =1L ttOO—HC dTHes(to) = Hem(to). Since the same simplification applies
to the Magnus expansion of the (time-independent) effective Hamiltonian series (72)), the 1/w™*1 coefficient
of the effective Hamiltonian appearing in Eq. trivially evaluates to zero,

o [ﬁ(i}” 1/4 = On1 [Hg{p, 1/4 —0. (74)

Combining Eqs. and we find Any41(to) = Cn+1 [ﬁmt, 1/w], which, when combined with Eq. ,
results in the simplified computation method of the effective Hamiltonian.

While the computation of the effective Hamiltonian for constant drive amplitudes is comparatively sim-
ple, we emphasize that computing the effective time evolution for a freely chosen gauge parameter [
[corresponding to tg = fy/(2w) for the time evolution operator Uy, given in Eq. (18)] requires the use of kick
operators, as discussed in Sec. [I.4] The derivation of these kick operators is presented in the next section.

3. Kick Operators for non-Smooth Drives

The procedure for determining our effective Hamiltonians developed in Sec. [2] is based on the premise
that the drive envelope Hy(t) is completely smooth, i.e., all its derivatives exist. This property is required
to satisfy the assumption that the envelope changes sufficiently slowly in time as expressed by Eq. .

However, as noted in Sec. realistic drive envelopes often do not fulfill this requirement.
()
If the kth derivative of the envelope, H;, diverges, our effective Hamiltonian derivation cannot be carried

through straightforwardly beyond order 1/w*~1. To account for more generic drive envelopes satisfying the

generalized assumption , which allows for divergences in the form of a §-function, we now introduce kick

operators. To compute the correct time evolution, we make use of a kick operator for each time t; at which
N3

H)l diverges for some k.

Figure [4 exemplifies the role played by kick operators for a non-smooth envelope function. For the
case of the envelope H;(t) shown in Fig. [4{(a), the first derivative H;(t) diverges at the three times tq =
0, tqg = tgate/2, and tq = tgate. Figure [4{b) shows both the exact (red) and effective (blue, including
dashed lines) trajectories similar to those shown in Figs. [I| and [2| but which are plotted in a (¢, 8)-polar
representation of the Bloch sphere surface for a qubit initialized at the north pole, (¢,6) = (0,0). There
are three instantaneous displacements in the effective trajectory shown in the figure (indicated by dashed
lines), and each of these is the result of applying a kick operator at the corresponding time of divergence of
the envelope’s derivative. The second time of divergence, tq = tgate/2, serves as an illustrative example in
the following discussion.

For our derivation of the kick operator we assume, in accordance with the extended assumption ,
that the envelope H;(t) diverges at no more than one time t4 within a Magnus interval,

[t() + nte, to + (n + 1)tc), (75)

which is defined by a time offset tg € [0,t.) and an integer n. This is a reasonable assumption whenever the
time t, = m/w is short compared to the gate duration ¢zate. Now consider a generic envelope H; (t) exhibiting

21



3 (b)

|
|
|
|
|
|
|
|
0.

0.0 0.2 0.4 6 0.8 1.0

t/ tgate

Figure 4: Qubit trajectories for piecewise-analytic driving envelope. (a) Envelope defined in Note [44], whose derivative diverges
at times t4 = 0 with n = —1 [defining the Magnus interval ], tq = tgate/2 with n = 1 and t4 = tgate with n = 3. (b) The
axes of the plot represent the latitude 6 and longitude ¢ of a rotated Bloch sphere where |+) = (|0) +|1))/+/2 defines the north
pole (see also Note [45]). The qubit is initialized at the north pole, (¢, 8) = (0,0). Shown are the exact (red) and effective (blue)
trajectories, the latter for the gauge parameter Sp = 0.45 X 27. Instantaneous displacements, caused by kick operators, are
shown as dashed lines that connect the effective trajectories for ¢t < t4 and t > t4 [cf. Eq. ] For the second displacement,
labeled K>, the endpoints on each trajectory before and after ty = tgate/2 are indicated by diamonds. Surrounding generators
of exact and effective time evolution operators across intervals and are labeled Q4 through Qp.

a discontinuity at time ¢; in an interval . We begin our derivation by introducing Hamiltonians H,

and H,,, similar to Eq. (4) with envelopes H;(t) = H;(t) and H7 (t), respectively, all of which we define
below in a way that they are smooth on the entire interval . In the anterior part of the interval ,

[to + nte, ta), (76)
the envelope H;~(t) is given by H(t), while in the posterior part,
ta,to + (n + 1)te), (77)

the same envelope H;~(t) is equal to its analytic continuation in that region. Conversely, the envelope Hi (t)
equals Hi(t) in the posterior part of the interval (75)), while in the anterior part it is equal to its analytic
<
=

continuation. With reference to the regular rotating-frame Hamiltonian , we introduce Hamiltonians Hz,

that are smooth on the entire Magnus interval ,

< oy T . | A
on(t) = 1 (cos(@)oy + cos(2wt + ¢)og + sin(P)oy, — sin(2wt + ¢)oy,) + 50 (78)
With reference to the effective Hamiltonian , we similarly introduce effective Hamiltonians,
[e'e) <
< hz (t§ tO)
altito) = Z kT’ (79)
k=0

each of which can then be obtained via the method of Sec. using the respective smooth Hamiltonian Hrgot.
Therefore, both effective Hamiltonians Hfﬁ are also smooth on the entire Magnus interval .

The appearance of a kick operator Kj;(tq;to) at the jth time of divergence ¢4 is a direct consequence
of the condition that the effective and exact trajectories are to coincide at the boundaries of the Magnus
interval . In fact, we use this condition to derive the jth kick operator via its corresponding unitary
operator e’i, which provides an impulse connecting the effective trajectories for times ¢t < t4 and t > tg4.
We define generators ; with i = A, B,C, D on a Magnus interval via the framed section shown in
Fig. b)7 for which n = 1 [cf. Fig. (a)], j =2 and t; = tgate/2. That is, 4 and e?# correspond to the
eract time evolutions across the anterior interval (76 and the posterior interval , respectively, while P
and e%¢ correspond to the respective effective time evolutions. Taking into account the action of the kick
operator K; for the effective time evolution, the demand on a stroboscopic time evolution [cf. the equality
of the effective and exact time evolutions as stated in Eq. ] implies equal propagators across the interval

@), ie.
Uy, (to + (n + 1)te, to + nt,) = ec efi(taito) oo = 25, (80)
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Solving for the kick operator,

eKi(tasto) — =0 QB4 —Op (81)
we are then able to compute compute K; perturbatively. To do this, we first evaluate 24 through Qp as
a series expansion in 1/w using the Magnus-Taylor expansion (introduced in Sec. of the Hamiltonians
and , and then apply the Baker-Campbell-Hausdorff formula to Eq. .

Recall that we defined the Magnus-Taylor expansion M[H, t;to] in Eq. (40) for (i) a Hamiltonian H
(ii) a reference time t for the associated Taylor series and (iii) a time offset ¢g, which determines the
fundamental Magnus interval , [to,to + tc). To compute the Magnus-Taylor expansion for a generic
interval [t,, t;) we now introduce an extended notation,

MM, tta,te] = > mp[H, t;ta, ], (82)
k=0

in which both interval boundaries ¢, and t; are given explicitly. The lowest two terms in the summation
of Eq. , mg and mq, are respectively given by Egs. and upon replacing the integral bounds
via tg — t, and to + t. — tp. Below we replace the envelope H;(t) and its derivatives by Taylor series
with respect to the time of the divergence; that is, we use the Taylor series with ¢ = t4 to determine
Magnus-Taylor expansions of the form M[H, tg; ta, ts].

From the definition of the propagators e*4 through e [cf. Fig. (b)]7 it is clear that the required
Magnus-Taylor expansions are taken for the anterior interval or the posterior interval . Further-
more, similar to the time evolution across an entire Magnus interval expressed via the Magnus-Taylor
expansion , the operators 4 through Qp can be expressed via the Magnus Taylor expansion with
extended notation given in Eq. (82). Because of this we have

Qq = ZM[ o tasto + nte,ta] (ta — (to + nte)), (83)
Qp = ZM[HrOt,td, ta,to + (n+ D] (to + (n+ D)t. — tq), (84)
Qc = —iM[HZg, tasta, to+ (n+ 1)t.] (to + (n+ 1)te — ta), (85)
QD = 72M[Heﬂs, td, to + Tltc, td] (td — (to + m‘c)), (86)

where again n = 1 for the time evolution within the framed section shown in Fig. ] Below we express the
kick operators using a dimensionless parameter that replaces the time of the divergence ¢4,

Ba = 2wtq, (87)

which is defined in analogy to the gauge parameter Sy = 2wtg.

Similar to the effective Hamiltonian expansion , we now expand the kick operator K;(t4;to) as a
power series in 1/w,

= KM (t; to)
K;(tasto) = ; P (88)

The terms K J(-k) are obtained by combining Eq. with Eqgs. — and, as noted above, applying the
Baker-Campbell-Hausdorff formula. Similar to the example calculations in Sec. [2.2] in order to determine
each term K ®) with its appropriate dimensionality in 1/w, in this calculatlon we replace the time parameters
te, to and tq4 by their respective dimensionless parameters [see Egs. . and . The first two terms
of this expansion are then given by

KV (tasto) = i%[(m% +¢) = sin(Ba + 6))o + (cos(fo + ) — cos(Ba+ )y, (89)
K®(tity) — z-(Hf)QT(HW(Sm(Bd — Bo) — 2sin(Ba + 26) + 2sin(Bo + 26))0.
H%gﬁ’f)[(sm(gd +¢) —sin(By + ¢))ou + (cos(Ba + @) — cos(Bo + ¢))y]
i T s+ 6) — cos(Ba + 6))0s + (sin(Ba+ ) —sin(Bo+ O))ay)s  (90)
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where Hl§ and ng are shorthand for the Taylor coefficients ng (tq) and ng (tq), respectively. The third

order coeflicient K ;3)7 which is the lowest non-vanishing kick operator term for the envelope with sinusoidal
ramp [41], is available on request.

We note that an interesting situation occurs when the time of divergence coincides with the edge of a
Magnus interval ., ie., if t4 = to + nt. for an integer n. In such a case the above derivation of the
kick operators turns tr1v1a1 Startmg with the constructlon of the anterlor and osterlor intervals and the
corresponding envelope functions H7 S and Hamiltonians Hrot and ’H [cf. Egs. . As a coneequence

the kick operator K;(tq = to + nt.;to) = 0 vanishes. [This is reﬂected by the fact that K\ p ) and K p D given
above explicitly, vanish for this case, since ty = tg + nt. implies 83 = By (mod 27).] The total number of
nontrivial kick operators may thus be minimized by an appropriate choice of the gauge parameter f3.

In this section we have thus extended our theory for restricted drives, whose slowly varying amplitude
functions are completely smooth, to more generic amplitude functions that fulfill the generalized assumption
(21). The generator of the time evolution operator is given by a sum of the effective Hamiltonians defined
via piecewise smooth envelopes (obtained using the recursive procedure derived in Sec.[2)) and kick operators
1K (tq;t0)d(t —tq) for the jth discontinuity, where K; is given by Eq. . For example, in the case of the
envelope shown in Fig. {4 I(a the combined effective Hamlltoman reads

Herr(t;t0) = Hep(to)O()O(tgate/2 — t) + Hig(t;10)O(t — tgare/2)O (tgate — t)
FL (05 10)5(8) + Ko (Egute/2: £0)3(t — fgate/2) + iKa(tgare: t0)3(t — tgate).  (91)

Here we have taken into account the fact that the envelope for times ¢ € [0, {gate/2] is constant, so that for
this interval the effective Hamiltonian is independent of the current time ¢.

The effective time evolution operator for the complete pulse with the envelope shown in Fig. (a)
is given by

gate

Utg( ;—ate,o—) Kg(tgdtmt(]) <T€ figate/Q dTH;f(T;tO)) eK2(tgatc/2§t0)e*iH:ff(tO)tgatc/zeKl(0§t0)_ (92)

Here the evolution is considered from initial time ¢; = 0~ slightly before the beginning of the pulse to
final time t;ate Slightly after the end of the pulse, in order to include all é-functions that appear in the
Hamiltonian . Recall that, as introduced in Sec. Bo = 2wty € [0, 277) is called a gauge parameter
because its ch01ce does not alter the result of the time evolutlon operator Uy, (¢, aates 07) over the entire pulse.

Recall that in Sec. [I.4] we illustrated the action of kick operators on the basis of the square pulse whose
envelope function is shown in Fig. (b) The corresponding trajectories, exemplified on the left of Fig.
for several gauge parameters [y, can be obtained from a combined effective Hamiltonian containing kick
operators and the resulting effective time evolution operator [these operators are similar to those in Eqgs. (91))
and ] This time evolution operator then includes instantaneous displacements at the beginning and end
of each trajectory. We note that the effective qubit trajectories would be the same if the constant envelope
was “always on,” i.e., Hy(t) = H; for all times ¢, assuming the same initial condition | (¢ = 0)) = |0) as that
used in Fig. 2l For such a pulse, the kick operators derived in this section can similarly be used to determine
the displacement that connects one set of stroboscopic state vectors |9 (t,)) with ¢, € {to,to + tc,...} to
another set that contains state vectors |1 (¢),)) with ¢, € {t(,t( +tc,.. .}

4. Conclusions

The objective of the present work has been to study the time evolution of a linearly driven qubit in the
regime of strong driving, i.e., for field strengths smaller than or comparable to the drive frequency w, or
|H1(t)] < w, with special emphasis on the consequences of the envelope being time dependent. For strong
and time-dependent driving, the errors of the predicted time evolution using standard methods—such as the
rotating wave approximation combined with Bloch-Siegert shifts—are appreciable. We have addressed this
problem by introducing an effective Hamiltonian which generates a stroboscopic time evolution; that is, the
time evolution operator due to our effective Hamiltonian agrees with the exact time evolution operator at
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points equally spaced in time. The time difference between two points of agreement is equal to the duration
of the Bloch-Siegert oscillations, or the drive period in the rotating frame. Since our effective Hamiltonian
generalizes the rotating wave approximation and allows one to approximate the exact trajectory to arbitrary
accuracy, we call our theory the exact rotating wave approximation.

The effective Hamiltonian has been obtained as a power series in the inverse drive frequency. In order
to compute the coefficients of this series in a systematic fashion, we have introduced the Magnus-Taylor
expansion, a new method for performing time-dependent perturbation theory that utilizes both a Magnus
expansion and a Taylor series. This Magnus-Taylor expansion has allowed us to derive a recurrence relation
that determines the set of operator coefficients that make up the effective Hamiltonian. Assuming an
envelope that varies only slightly on the time scale of the drive period, 1/w, our effective Hamiltonian—as
in the case of the Hamiltonian in the rotating wave approximation—also varies only slightly on the same
time scale of ~ 1/w, thereby reducing numerical demands for computing an approximation for the driven
qubit’s time evolution. While the predicted time evolution agrees with the exact trajectory only once per
drive period, mutually-disjoint sets of stroboscopically-defined points along the trajectory can be obtained
by varying the gauge parameter 5y = 2wty with Sy € [0,27), which is a free parameter of our effective
Hamiltonian Heg(t;to) through its dependence on tg. The ability to freely choose Sy allows one to obtain
the qubit state vector along the exact trajectory for any desired point in time. The quantity S is called a
gauge parameter, because when changing its value both the beginning and end points of the stroboscopic
qubit trajectory are left invariant.

While empirically we find that our series expression for the effective Hamiltonian H.g appears to converge
vary rapidly for cases of practical interest, we cannot provide any formal guarantees about the convergence
of this series; even the convergence of the Magnus expansion itself is a difficult subject. We have probed a
speculation that, besides being defined by a series, our Heg may be given an axiomatic definition independent
of the series analysis. For the case of an analytic envelope Hj(t), surely two of these axioms would be that
1) Hes(t;to) is an analytic function of time ¢, and 2) its time evolution operator agrees exactly with that of
the rotating-frame Hamiltonian H,.¢ at times tg, tg + tc, to + 2t¢, ... These two axioms, however, are clearly
not sufficient, because the exact Hamiltonian, H,., also satisfies them. Therefore at least one more axiom
would be required.

After examining various candidates for such an additional axiom, two of the authors have explored what
seemed the most intuitive route. When comparing the effective and exact Bloch-sphere trajectories for a
driven qubit (see, e.g., Fig. |1)), it is easy to note that the former trajectories traverse significantly shorter
paths than the latter. We argue that since the length of the qubit trajectory is related to the norm of the
Hamiltonian via the time evolution operator, the positive eigenvalue of the effective Hamiltonian is likely
smaller than that of the exact Hamiltonian. Based on this, we considered the following third axiom, 3)
for all analytic Hamiltonians H(¢; o) satisfying axioms 1) and 2) stated above, the integral of the positive
eigenvalue of that Hamiltonian, eig, (#), taken over all times and the entire range of gauge parameters,

QMH] = [~ dr fOQTr dfp eig, (M), is minimized by H = Heg. In Ref. [46] the validity of this third axiom has
been tested by numerically minimizing the functional Q[H] for variable Hamiltonians. This study, however,
refutes our hypothesized third axiom by the identification of a counterexample, that is, a drive envelope has
been found for which the functional @ is minimized by a Hamiltonian H # H.g. Nonetheless, we are still
hopeful that a complete axiomatic definition may be discovered by identifying a suitable third axiom.

If the drive envelope H;(t) is not a smooth function of time, the effective Hamiltonian needs to be

supplemented by the kick operator formalism. A kick operator is the generator of an impulse that connects
k

effective trajectories before and after the times at which one of the envelope’s derivatives, Hj (t), diverges
in form of a o-function. Expressing the kick operator as a series expansion in 1/w similar to that of the
effective Hamiltonian, we have derived a systematic procedure to obtain these kick operators using the
Magnus-Taylor expansion.

The driven quantum two-level system is an excellent platform for introducing our effective Hamiltonian
theory, because it allows for a visual presentation of the properties of our effective Hamiltonians and kick
operators. However, none of the steps taken within this work rely on the driven quantum system being two-
dimensional, and under certain restrictions our work can be applied almost in parallel to Hamiltonians with
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more than one drive or with a time-dependent phase offset ¢ = ¢(t) in the Hamiltonian . We therefore
envision that our basic theory can be extended to more generic problems including larger driven quantum
systems or less restricted drives. Furthermore, two-qubit gates of interest, for example the so-called cross-
resonance gate, also involve resonant driving between two levels and thus could be effectively analyzed with
our methods. We are optimistic that our exact rotating wave approximation will have many applications
in the forthcoming quest to more precisely analyze the creation of new, high precision logic gate operations
for quantum computing.
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Appendix A. Example Effective Hamiltonians

Assuming a completely analytic pulse envelope, here we give some concrete results. As discussed in
Sec. the effective Hamiltonian of order 1/w?, as given in Eq. , can be obtained by starting with
the Hamiltonian given in the rotating wave approximation, and then applying the recurrence relation
repeatedly. The examples shown below are for the generic rotating-frame Hamiltonian and various
limiting cases of vanishing parameters ¢ and A.

We first write the effective Hamiltonians as a sum of terms H;, which are proportional to 1/w® for i = 0,
1, and 2,

Heo(t; to) = Ho(t;to) + Halt;to) + Ha(t; to) + O(1/w?). (A1)

By convention, the dependence on ty is given through the dimensionless gauge parameter 8y = 2wt € [0, 27)

introduced in Eq. .
For the most generic case of arbitrary ¢ and A we find the lowest three terms of Eq. (A.1]) to be

Ho = %[cos $0, + sin go,] + gaz, (A.2)
Hi = %(1 —2cos(fo + 2¢))o. + & [cos(Bo + ¢)a. — sin(Bo + ¢)oy ]

+%[sin(ﬁo + @)os + cos(By + ¢)ay], (A.3)
Hy = 2;32 [(—2cos ¢ + 2 cos(Bo + 3¢) — cos(26 + 30))0,

+(—2sin ¢ + 2sin(By + 3¢) + sin(280 + 3¢))a,]

2 2
+3AQZ;_(—1 + cos(Bo + 2¢))0 _ %[COSWO +¢)ox —sin(fo + ¢)oy ]
3?;151 sin(fl + 20)0- - gfgl [sin(fo + @) + cos(Bo + ¢)y
i
22 cos(Bo + 6)a, — sin(Bo + 6)o,). .

Note that here and below all temporal dependences of the Hamiltonians terms H; = H;(; o), the envelope
)k ()F

Hy, = Hy(t) and its derivatives ﬁl = ﬁl (t) are all kept implicit.
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Setting A = 0 in the above Hamiltonian terms, we find the effective Hamiltonian for on-resonant driving
to be

H
Ho = Tl[cos $og + sin oy ], (A.5)
H? H,
My = S L(1—2cos(fo+ 26))o= + o [sin(Bo + G)or + cos(Fo + )y, (A6)
Hd
Hy = 5o 51(=2008 6+ 2c08(fo + 3¢) — cos(260 + 3¢))ow
3H H
+(=2sin ¢+ 2sin(fo + 36) +sin(28o +39))oy] + 5 5+ sin(Bo +20)0-
H .
16 ——5[cos(Bo + @)ox — sin(Bo + ¢)ay]. (A7)
Alternatively, setting ¢ = 0 in the Hamiltonian terms (A.2)-(A.4) yields
o A
7‘[0 = TO@ + 50’2, (A8)
H? AH, . Hy
H, = 32—;(1 —2cos fBy)o, + ™ [cos Booy — sin Booy] + 8—w[81n Boos + cos Booy], (A.9)
H3
Ho = 2561 5[(—=2 +2cos By — cos(20) )0 + (2sin By + sin(260)) oy ]
AH? A2H : 3HHy
4 32w1 (=14 cosBy)o, — TUJ;[COS Boo, — sin fooy] + ﬁ sin Byo,
A, [sin Boog + cos Booy] + 112[(:03 Boos — sin Booy]. (A.10)

- 8w? 16w

Finally, the Hamiltonian for the special case of both resonance and zero phase offset, A = 0 and ¢ = 0,
is given by

H
Hy = jl% (A.11)
Hi = H2(1—2 Bo) +£[ Boos + cos Booy], (A.12)
1 = 3% COS Do )0 » 8w sin 00 ¢ COS D0y .
H3
Hy = 2562412 [(=2 + 2cos By — cos(20p))ox + (2sin o + sin(25,) ) oy ]
3H\H, H,
—i—ﬁ sin Bgo, + T2 [cos Booy — sin Byoy). (A.13)
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