TY - JOUR AU - Talalwa, Lotfi AU - Natour, Ghaleb AU - Bauer, Andreas AU - Drzezga, Alexander AU - Beer, Simone AU - Gordjinejad, Ali TI - T1-mapping and dielectric properties evaluation of a 3D printable rubber-elastomeric polymer as tissue mimicking materials for MRI phantoms JO - Materials Research Express VL - 7 IS - 11 SN - 2053-1591 CY - Bristol PB - IOP Publ. M1 - FZJ-2020-04346 SP - 115306 PY - 2020 AB - In this study, a new series of 3D printable rubber-elastomeric polymer called PORO-LAY materials have been investigated regarding their suitability to serve as tissue mimicking materials (TMMs) for MRI phantoms. PORO-LAY materials have been previously used in biofuel cell developments, particle filtrations and modeling elastic tissues. We evaluated the electrical permittivity, electrical conductivity, spin-lattice T1-relaxation time and acquired the MRI contrast for simple and multi-material complex 3D printed shapes made of PORO-LAY materials at 3.0 T. The results showed a T1 diversity within PORO-LAY materials, which reveals in different MR image contrasts. The outcome favors PORO-LAY as an appropriate candidate that can be used in multi-materials additive manufacturing to produce realistic shapes such as white/grey matter structures for MRI phantoms with visible clear contrast. Finally, this study could serve as a reference and guideline when using these materials as tissue mimicking materials for different types of human body tissues and provide a promising opportunity to design novel phantoms for a wide range of MRI applications. LB - PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:000591065100001 DO - DOI:10.1088/2053-1591/abc76f UR - https://juser.fz-juelich.de/record/887685 ER -