000887689 001__ 887689
000887689 005__ 20210130010619.0
000887689 0247_ $$2doi$$a10.3390/w12051424
000887689 0247_ $$2Handle$$a2128/26112
000887689 0247_ $$2altmetric$$aaltmetric:82193718
000887689 0247_ $$2WOS$$aWOS:000555915200203
000887689 037__ $$aFZJ-2020-04350
000887689 082__ $$a690
000887689 1001_ $$00000-0002-5105-4557$$aKreklow, Jennifer$$b0$$eCorresponding author
000887689 245__ $$aComparing Rainfall Erosivity Estimation Methods Using Weather Radar Data for the State of Hesse (Germany)
000887689 260__ $$aBasel$$bMDPI$$c2020
000887689 3367_ $$2DRIVER$$aarticle
000887689 3367_ $$2DataCite$$aOutput Types/Journal article
000887689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605016136_19139
000887689 3367_ $$2BibTeX$$aARTICLE
000887689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887689 3367_ $$00$$2EndNote$$aJournal Article
000887689 520__ $$aRainfall erosivity exhibits a high spatiotemporal variability. Rain gauges are not capable of detecting small-scale erosive rainfall events comprehensively. Nonetheless, many operational instruments for assessing soil erosion risk, such as the erosion atlas used in the state of Hesse in Germany, are still based on spatially interpolated rain gauge data and regression equations derived in the 1980s to estimate rainfall erosivity. Radar-based quantitative precipitation estimates with high spatiotemporal resolution are capable of mapping erosive rainfall comprehensively. In this study, radar climatology data with a spatiotemporal resolution of 1 km2 and 5 min are used alongside rain gauge data to compare erosivity estimation methods used in erosion control practice. The aim is to assess the impacts of methodology, climate change and input data resolution, quality and spatial extent on the R-factor of the Universal Soil Loss Equation (USLE). Our results clearly show that R-factors have increased significantly due to climate change and that current R-factor maps need to be updated by using more recent and spatially distributed rainfall data. Radar climatology data show a high potential to improve rainfall erosivity estimations, but uncertainties regarding data quality and a need for further research on data correction approaches are becoming evident. 
000887689 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000887689 588__ $$aDataset connected to CrossRef
000887689 7001_ $$00000-0002-9926-8028$$aSteinhoff-Knopp, Bastian$$b1
000887689 7001_ $$0P:(DE-HGF)0$$aFriedrich, Klaus$$b2
000887689 7001_ $$0P:(DE-Juel1)129578$$aTetzlaff, Björn$$b3
000887689 773__ $$0PERI:(DE-600)2521238-2$$a10.3390/w12051424$$gVol. 12, no. 5, p. 1424 -$$n5$$p1424 -$$tWater$$v12$$x2073-4441$$y2020
000887689 8564_ $$uhttps://juser.fz-juelich.de/record/887689/files/Kreklow%20et%20al.%202020_R-Faktor_water-12-01424.pdf$$yOpenAccess
000887689 8564_ $$uhttps://juser.fz-juelich.de/record/887689/files/Kreklow%20et%20al.%202020_R-Faktor_water-12-01424.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000887689 909CO $$ooai:juser.fz-juelich.de:887689$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000887689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129578$$aForschungszentrum Jülich$$b3$$kFZJ
000887689 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000887689 9141_ $$y2020
000887689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000887689 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887689 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER-SUI : 2018$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887689 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000887689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000887689 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000887689 980__ $$ajournal
000887689 980__ $$aVDB
000887689 980__ $$aUNRESTRICTED
000887689 980__ $$aI:(DE-Juel1)IBG-3-20101118
000887689 9801_ $$aFullTexts