000887694 001__ 887694
000887694 005__ 20220930130257.0
000887694 0247_ $$2doi$$a10.1016/j.cortex.2020.08.012
000887694 0247_ $$2ISSN$$a0010-9452
000887694 0247_ $$2ISSN$$a1973-8102
000887694 0247_ $$2Handle$$a2128/26131
000887694 0247_ $$2pmid$$a33065515
000887694 0247_ $$2WOS$$aWOS:000588059000032
000887694 037__ $$aFZJ-2020-04355
000887694 082__ $$a610
000887694 1001_ $$0P:(DE-Juel1)161305$$aPläschke, Rachel N.$$b0$$eCorresponding author
000887694 245__ $$aAge differences in predicting working memory performance from network-based functional connectivity
000887694 260__ $$aNew York, NY$$bElsevier$$c2020
000887694 3367_ $$2DRIVER$$aarticle
000887694 3367_ $$2DataCite$$aOutput Types/Journal article
000887694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605254262_11844
000887694 3367_ $$2BibTeX$$aARTICLE
000887694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887694 3367_ $$00$$2EndNote$$aJournal Article
000887694 500__ $$aThis study was supported by the Deutsche Forschungsgemeinschaft (DFG), contract grantnumbers: EI 816/4-1, LA 3071/3-1; the National Institute of Mental Health, contract grantnumber: R01-MH074457; the Helmholtz Association Theme “Supercomputing and Modelingfor the Human Brain”; and the European Union’s Horizon 2020 Research and InnovationProgramme, contract grant number: 7202070 (HBP SGA1).
000887694 520__ $$aDeterioration in working memory capacity (WMC) has been associated with normal aging, but it remains unknown how age affects the relationship between WMC and connectivity within functional brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the connectome in young and old adults using relevance vector machine in a robust cross-validation scheme. Particular brain networks have been associated with mental functions linked to WMC to a varying degree and are associated with age-related differences in performance. Comparing prediction performance between the young and old sample revealed age-specific effects: In young adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in older adults each network significantly predicted WMC. Moreover, both WM-related and WM-unrelated networks were differently predictive in older adults with low versus high WMC. These results indicate that the within-network functional coupling during task-free states is specifically related to individual task performance in advanced age, suggesting neural-level reorganization. In particular, our findings support the notion of a decreased segregation of functional brain networks, deterioration of network integrity within different networks and/or compensation by reorganization as factors driving associations between individual WMC and within-network RSFC in older adults. Thus, using multivariate pattern regression provided novel insights into age-related brain reorganization by linking cognitive capacity to brain network integrity.
000887694 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000887694 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000887694 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000887694 588__ $$aDataset connected to CrossRef
000887694 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b1$$ufzj
000887694 7001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna C.$$b2$$ufzj
000887694 7001_ $$0P:(DE-HGF)0$$aNostro, Alessandra D.$$b3
000887694 7001_ $$0P:(DE-Juel1)161460$$aVarikuti, Deepthi P.$$b4
000887694 7001_ $$0P:(DE-Juel1)167223$$aPlachti, Anna$$b5$$ufzj
000887694 7001_ $$0P:(DE-HGF)0$$aLösche, Patrick$$b6
000887694 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b7$$ufzj
000887694 7001_ $$0P:(DE-HGF)0$$aKalenscher, Tobias$$b8
000887694 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b9$$ufzj
000887694 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b10$$eCorresponding author
000887694 773__ $$0PERI:(DE-600)2080335-7$$a10.1016/j.cortex.2020.08.012$$gVol. 132, p. 441 - 459$$p441 - 459$$tCortex$$v132$$x0010-9452$$y2020
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/OAD0000070190.pdf
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/1-s2.0-S0010945220303142-main.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/OAD0000070190.pdf?subformat=pdfa$$xpdfa
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/Pl%C3%A4schke_et_al_MS_CORTEX_R2.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/Pl%C3%A4schke_et_al_Predictions_WM_Aging_Supplement.pdf$$yRestricted
000887694 8564_ $$uhttps://juser.fz-juelich.de/record/887694/files/1-s2.0-S0010945220303142-main.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000887694 8767_ $$8OAD0000070190$$92020-09-22$$d2020-11-17$$eHybrid-OA$$jZahlung erfolgt$$pS0010945220303142$$zBelegnr. 1200159493
000887694 909CO $$ooai:juser.fz-juelich.de:887694$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161305$$aForschungszentrum Jülich$$b0$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b1$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich$$b2$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167223$$aForschungszentrum Jülich$$b5$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b7$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b9$$kFZJ
000887694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b10$$kFZJ
000887694 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000887694 9141_ $$y2020
000887694 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000887694 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000887694 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORTEX : 2018$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887694 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000887694 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000887694 920__ $$lyes
000887694 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000887694 980__ $$ajournal
000887694 980__ $$aVDB
000887694 980__ $$aUNRESTRICTED
000887694 980__ $$aI:(DE-Juel1)INM-7-20090406
000887694 980__ $$aAPC
000887694 9801_ $$aAPC
000887694 9801_ $$aFullTexts